國立中央大學112學年度碩士班考試入學試題
所別: 土木工程研究所
科目:工程數學
解答:y(x)=u(x)e2x⇒y′=u′e2x+2ue2x⇒y″=u″e2x+4u′e2x+4ue2x⇒(x+2)(u″e2x+4u′e2x+4ue2x)−(2x+5)(u′e2x+2ue2x)+2ue2x=(x+1)ex⇒(x+2)e2xu″+(2x+3)e2xu′=(x+1)ex⇒u″+2x+3x+2u′=x+1x+2e−x⇒integration factor I(x)=e∫2x+3x+2dx=e2x−ln(x+2)⇒e2x−ln(x+2)u″+2x+3x+2e2x−ln(x+2)u′=x+1x+2ex−ln(x+2)⇒(e2x−ln(x+2)u′)′=x+1x+2ex−ln(x+2)⇒e2x−ln(x+2)u′=ex−ln(x+2)+c1⇒u′=e−x+c1eln(x+2)−2x⇒u=−e−x+c1(−14)(2x+5)e−2x+c2⇒y=ue2x=−ex+c3(2x+5)+c2e2x⇒y′=−ex+2c3+2c2e2x⇒{y(0)=−1+5c3+c2=1y′(0)=−1+2c3+2c2=1⇒{c2=3/4c3=1/4⇒y=34e2x−ex+32x+54解答:Pn(x)=12nn!⋅dndxn(x2−1)n⇒P5(x)=125⋅5!⋅d5dx5(x2−1)5=125⋅5!⋅d5dx5(x10−5x8+10x6−10x4+5x2−1)=125⋅5!⋅d4dx4(10x9−40x7+60x5−40x3+10x)125⋅5!⋅d3dx3(90x8−280x6+300x4−120x2+10)=125⋅5!⋅d2dx2(720x7−1680x5+1200x3−240x)=125⋅5!⋅ddx(5040x6−8400x4+3600x2−240)=125⋅5!(30240x5−33600x3+7200x)=638x5−354x3+158x
解答:my″+cy′+ky=f(t)⇒y″+4y′+4y=e−2t⇒L{y″}+4L{y′}+4L{y}=L{e−2t}⇒s2Y(s)+4sY(s)+4Y(s)=1s+2⇒Y(s)=1(s+2)3⇒y(t)=L−1{Y(s)}=L−1{1(s+2)3}=e−2tL−1{1s3}=12t2e−2t⇒y(t)=12t2e−2t
解答:A=[42−2250−203]⇒A2=[2418−141829−4−14−413]⇒A4=[10961010−59010101181−420−590−420381]⇒A5=A4A=[75847242−396272427925−3280−3962−32802323]
解答:Green's theorem in the plane is a special case of Stokes' theorem.
==================== END ==================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言