Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年2月25日 星期日

108年北科大電機碩士班-線性代數詳解

國立台北科技大學108學年度碩士班招生考試

系所組別: 2150電機工程系碩士班戊組
第一節 線性代數

解答: {x1+3x2+10x3=182x1+7x2+32x3=29x1+3x2+14x3=12x1+x2+2x3=8[131027321314112][x1 x2x3]=[18 29128]augmented matrix [1310182732291314121128]2R1+R2R2,R1+R3R3,R1+R4R4[131018013526506243002810]R3/6R3,R4/2R4[131018013526501450145]3R3+R1R1,13R3+R2R2,R3+R4R4[1023000001450000]R2R3[1023014500000000]{x12x3=3x2+4x3=5(x1,x2,x3,x4){(2k+3,4k+5,k)kR}
解答: (a)|11312413a|=0a=5[11321243135b]R2R1R2,R3R1R3[11320111022b2]infinitely many sollutions 12=1b2b=4{a=5b=4(b) trivially,{a=5b4
解答: Let T:EF and T=[a1a2a3b1b2b3c1c2c3]T(vi)=ui,i=1,2,3{[a1a2a3b1b2b3c1c2c3][111]=[110][a1a2a3b1b2b3c1c2c3][232]=[120][a1a2a3b1b2b3c1c2c3][154]=[121]{[111232154][a1a2a3]=[111][111232154][b1b2b3]=[122][111232154][c1c2c3]=[001][111232154]1=[231313210734313]{[a1a2a3]=[231313210734313][111]=[23143][b1b2b3]=[231313210734313][122]=[23013][c1c2c3]=[231313210734313][001]=[13013]T=[231432301313013]x=3v1+2v2v3=(3,3,3)+(4,6,4)(1,5,4)=(6,4,3)=au1+bu2+cu3{a+b+c=6a+2b+2c=4c=3(a,b,c)=(8,5,3)
解答: limnanan1=αlimnanan1=limnan1+an2an1=1+limnan2an1=1+1αα=1+1αα2α1=0α=1+52,Q.E.D.
解答: A=[v1v2v3]=[125114143147121]{v1=(1,1,1,1,1)Tv2=(1,1,4,4,2)Tv3=(5,4,3,7,1)T by Gram-Schmidt processing{e1=15(1,1,1,1,1)Te2=12(1,0,1,1,1)Te3=12(1,0,1,1,1)TQ=[e1e2e3]=[5512125500551212551212551212]R=QTA=[5545062004]A=QR=[5512125500551212551212551212][5545062004]
解答: <1,1>=111dx=21=2e1=11=12{<12,x>=1112xdx=0<x,x>=11x2dx=23e2=x<12,x>12x<12,x>12=xx=32x{<12,x2>=23<32x,x2>=0e3=x2<12,x2>12<32x,x2>32xx2<12,x2>12<32x,x2>32x=x213x213=3522(x213)e4=x3<12,x3>12<32x,x3>32x<3522(x213),x3>3522(x213)x3<12,x3>12<32x,x3>32x<3522(x213),x3>3522(x213)=x3<32x,x3>32xx3<32x,x3>32x=x315xx315x=5522(x315x)an orthonormal basis: 12,32x,3522(x213),5522(x315x)
解答: A=[12011213101020100028]rref(A)=[10201011020001400000][10201011020001400000][x1x2x3x4x5]=0{x1+2x3x5=0x2x32x5=0x4+4x5=0x=x3(21100)+x5(12041)a basis of  ker(T)={(21100),(12041)}
解答[24236958273942216334]=[10000a11000a2a3100a4a5a610a7a8a9a101][b1b2b3b40b5b6b700b8b9000b100000]=[b1b2b3b4a1b1a1b2+b5a1b3+b6a1b4+b7a2b1a2b2+a3b5a2b3+a3b6+b8a2b4+a3b7+b9a4b1a4b2+a5b5a4b3+a5b6+b8a4b4+a5b7+a6b9+b10a7b1a7b2+a8b5a7b3+a8b6+a9b8a7b4+a8b7+a9b9+a10b10]{b1=2b2=4b3=2b4=3{a1b1=6a1b2+b5=9a1b3+b6=5a1b4+b7=8{a1=3b5=3b6=1b7=1B=[1000031000111002211033201][24230311000500000000]
解答: C=[110110]W=CCT=[211110101]det(WλI)=0eigenvalues: λ=3,1,0 eigenvectors:[211],[011],[111]normalizationu1=[6/36/66/6],u2=[02/22/2],u3=[3/33/33/3]square roots of the nonzero eigenvalues {σ1=3σ2=1=[300100]U=[u1u2u3]=[63033662233662233]{v1=1σ1CTu1=[2/22/2]v2=1σ2CTu2=[2/22/2]V=[2/22/22/22/2]C=UVT=[63033662233662233][300100][2/22/22/22/2]T
解答: x26xy+y2=[x,y][1331][xy]=[x,y][12121212][2004][12121212][xy]=[12(x+y),12(x+y)][2004][12(x+y)12(x+y)]=[x,y][2004][xy]=2x2+4y2=5θcot2θ=116=0θ=45,.
 


==================== END ======================
解題僅供參考,其他歷年試題及詳解

2 則留言: