Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年3月1日 星期五

112年台大碩士班-線性代數C詳解

 國立臺灣大學112學年度碩士班招生考試

題號:295
科目:線性代數(C)


解答:(a)A=[uT1ut2uT3]=[123238513345]rref(A)=[101012000000] basis of W:{(1,2,5,3),(2,3,1,4)} and dimension of W=2(b)B=[uT1ut2uT3eT1eT2eT3eT4]=[1231000238010051300103450001]rref(B)=[1010041711701200317517000102179170000111]extended basis: {u1,u2,e1,e2}={(1,2,5,3),(2,3,1,4),(1,0,0,0),(0,1,0,0)}

解答:A=[sin2αsin2βsin2γcos2αcos2βcos2γ111]R1+R2R2[sin2αsin2βsin2γsin2α+cos2αsin2β+cos2βsin2γ+cos2γ111]=[sin2αsin2βsin2γ111111]det(A)=0,α,β,γA is not invertible,Q.E.D.

解答:f(λ)=|51λ12216040λ2857681λ|,f(λ)=048,24αf(λ)=λ3+bλ2+cλ+d=(λ+48)(λ24)(λα)λ2b4824α=α24(51λ)(40λ)(1λ)=(λ51)(λ+40)(λ1)λ2(51+401)=12α24=12α=36:,4848

解答:

解答:A=\begin{bmatrix}1 & 1 \\-2 & 4 \end{bmatrix} =PDP^{-1} =\begin{bmatrix}1/2 & 1 \\1 & 1 \end{bmatrix} \begin{bmatrix}3 & 0 \\0 & 2 \end{bmatrix} \begin{bmatrix}-2 & 2 \\2 & -1 \end{bmatrix} \\ \Rightarrow e^A=\begin{bmatrix}1/2 & 1 \\1 & 1 \end{bmatrix} \begin{bmatrix}e^3 & 0 \\0 & e^2 \end{bmatrix} \begin{bmatrix}-2 & 2 \\2 & -1 \end{bmatrix} = \bbox[red, 2pt] { \begin{bmatrix} e^2(2-e) & e^2(e-1) \\2e^2 (1-e) & e^2(2e-1) \end{bmatrix}}


解答:(A-I)(A-2I)=0 \Rightarrow \bbox[red, 2pt]{m_A(t)=(t-2)(t-1)} \\ (B-I)(B-2I) \ne 0 \Rightarrow \bbox[red, 2pt]{m_B(t)=(t-1)(t-1)^2}
解答:\begin{bmatrix}A\mid I \end{bmatrix} = \left[\begin{matrix}1 & -3 & 2 & 1 & 0 & 0\\-3 & 7 & -5 & 0 & 1 & 0\\2 & -5 & 8 & 0 & 0 & 1\end{matrix}\right] \xrightarrow{3R_1+R_2 \to R_2,3C_1+C_2\to C_2}\\ \left[\begin{matrix}1 & 0 & 2 & 1 & 0 & 0\\0 & -2 & 1 & 3 & 1 & 0\\2 & 1 & 8 & 0 & 0 & 1\end{matrix}\right] \xrightarrow{-2R_1+R_3\to R_3, -2C_1+C_3 \to C_3} \left[\begin{matrix}1 & 0 & 0 & 1 & 0 & 0\\0 & -2 & 1 & 3 & 1 & 0\\0 & 1 & 4 & -2 & 0 & 1\end{matrix}\right] \\ \xrightarrow{R_3+0.5R_2 \to R_3, C_3+ 0.5C_2 \to C_3}\left[\begin{matrix}1 & 0 & 0 & 1 & 0 & 0\\0 & -2 & 0 & 3 & 1 & 0\\0 & 0 & \frac{9}{2} & - \frac{1}{2} & \frac{1}{2} & 1\end{matrix}\right] \\ \Rightarrow \left[\begin{matrix}1 & 0 & 0\\3 & 1 & 0\\- \frac{1}{2} & \frac{1}{2} & 1\end{matrix}\right] \left[\begin{matrix}1 & -3 & 2\\-3 & 7 & -5\\2 & -5 & 8\end{matrix}\right]  \left[\begin{matrix}1 & 0 & 0\\3 & 1 & 0\\- \frac{1}{2} & \frac{1}{2} & 1\end{matrix}\right]^T =\left[\begin{matrix}1 & 0 & 0\\0 & -2 & 0\\0 & 0 & \frac{9}{2}\end{matrix}\right] \text{ is  diagonal}\\ \Rightarrow \bbox[red, 2pt]{P=\left[\begin{matrix}1 & 3 & - \frac{1}{2}\\0 & 1 & \frac{1}{2}\\0 & 0 & 1\end{matrix}\right]} \Rightarrow \text{signature of }A =\bbox[red, 2pt]{(2,1)}
解答:A=\begin{bmatrix}\langle u_1, u_1\rangle & \langle u_1, u_2\rangle & \langle u_1, u_3\rangle \\\langle u_2, u_1\rangle & \langle u_2, u_2\rangle & \langle u_2, u_3\rangle \\ \langle u_3, u_1\rangle & \langle u_3, u_2\rangle & \langle u_3, u_3\rangle\end{bmatrix} = \bbox[red,2pt]{ \begin{bmatrix}2& 3& 4 \\3 & 14 & 22 \\ 4& 22& 35 \end{bmatrix}}

解答:P=\begin{bmatrix}1/3 & 2/3  & 2/3\\2/3 & a & c\\ 2/3 &c & b\end{bmatrix} \Rightarrow \cases{(1/3,2/3,2/3) \cdot (2/3, a,c)=0\\ (1/3,2/3, 2/3) \cdot (2/3,c,b)=0\\ (2/3,a,c)\cdot (2/3,c,b)=0} \Rightarrow \cases{a=b\\ a+c=-1/3\\ ac=-2/9} \\ \text{choose} \cases{a=-2/3\\ b=-2/3\\ c=1/3} \Rightarrow P= \bbox[red, 2pt]{\begin{bmatrix}1/3 & 2/3  & 2/3\\2/3 & -2/3 & 1/3\\ 2/3 &1/3 & -2/3 \end{bmatrix}}

==================== END ======================
解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言