國立中山大學113學年度碩士班招生考試
科目名稱:工程數學【光電系碩士班】
解答:y′+2y=4e−2x⇒e2xy′+2e2xy=4⇒(e2xy)′=4⇒e2xy=4x+c1⇒y=4xe−2x+c1e−2x
解答:cos(x+y)dx+(3y2+2y+cos(x+y))dy=0⇒{P(x,y)=cos(x+y)Q(x,y)=3y2+2y+cos(x+y)⇒Py=−sin(x+y)=Qx⇒exact⇒Φ(x,y)=∫Pdx=∫Qdy⇒Φ=∫cos(x+y)dx=∫(3y2+2y+cos(x+y))dy⇒Φ=sin(x+y)+ϕ(y)=y3+y2+sin(x+y)+ρ(x)⇒Φ=sin(x+y)+y2+y2+c1=0解答:y″
解答:{dy\over dx}=(x+1)e^{-x}y^2 \Rightarrow {1\over y^2}dy=(x+1)e^{-x}dx \Rightarrow -{1\over y}=-xe^{-x}-2e^{-x}+c_1 \\ \Rightarrow \bbox[red, 2pt]{y={1\over xe^{-x}+2e^{-x}+c_2}}

解答:\cos(wt) ={1\over 2}(e^{iwt}+e^{-iwt}) \Rightarrow L\{f(t)\} =\int_0^\infty e^{at}\cos(wt)e^{-st}\,dt ={1\over 2 }\int_0^\infty \left(e^{(iw+a-s)t} + e^{(-iw+a-s)t}\right) \,dt\\ = {1\over 2}\left. \left[ {1\over iw+a-s}e^{(-iw+a-s)t} + {1\over -iw+a-s}e^{(-iw+a-s)t}\right] \right|_0^\infty \\={1\over 2} \left[ -{1\over iw+a-s} - {1\over -iw+a-s} \right] =\bbox[red, 2pt]{s-a\over (a-s)^2+w^2}
解答:\cases{x_1-x_2+x_3 =0\\ -x_1+x_2-x_3=0\\ 10x_2+25x_3=90\\ 20x_1+10x_2=80} =\begin{bmatrix}1 & -1& 1 \\-1 & 1& -1\\ 0& 10& 25\\ 20& 10& 0 \end{bmatrix} \begin{bmatrix}x_1 \\x_2 \\x_3 \end{bmatrix}=\begin{bmatrix}0 \\0\\ 90\\ 80 \end{bmatrix} \\ \text{augmented matrix:} \left[ \begin{array}{rrr|r}1 & -1 & 1 & 0\\-1 & 1 & -1 & 0\\0 & 10 & 25 & 90\\20 & 10 & 0 & 80\end{array} \right] \xrightarrow{R_1 +R_2\to R_2,R_4-20R_1\to R_4} \left[ \begin{array}{rrr|r}1 & -1 & 1 & 0\\0 & 0 & 0 & 0\\0 & 10 & 25 & 90\\0 & 30 & -20 & 80\end{array} \right] \\ \xrightarrow{R_3/10\to R_3} \left[ \begin{array}{rrr|r}1 & -1 & 1 & 0\\0 & 0 & 0 & 0\\0 & 1 & \frac{5}{2} & 9\\0 & 30 & -20 & 80 \end{array} \right] \xrightarrow{R_1+R_3\to R_1, R_4-30R_3 \to R_4} \left[ \begin{array}{rrr|r}1 & 0 & \frac{7}{2} & 9\\0 & 0 & 0 & 0\\0 & 1 & \frac{5}{2} & 9\\0 & 0 & -95 & -190 \end{array} \right] \\ \xrightarrow{R_4 /(-95)\to R_4} \left[ \begin{array}{rrr|r}1 & 0 & \frac{7}{2} & 9\\0 & 0 & 0 & 0\\0 & 1 & \frac{5}{2} & 9\\0 & 0 & 1 & 2 \end{array} \right] \xrightarrow{R_1-(7/2)R_4\to R_2, R_3-(5/2)R_4\to R_3} \left[ \begin{array}{rrr|r}1 & 0 & 0 & 2\\0 & 0 & 0 & 0\\0 & 1 & 0 & 4\\0 & 0 & 1 & 2 \end{array} \right] \\ \Rightarrow\bbox[red, 2pt]{ \cases{x_1=2\\ x_2=4\\ x_3=2}}

解答:[A\mid I]= \left[ \begin{array}{rrr|rrr}-1 & 1 & 2 & 1 & 0 & 0\\3 & -1 & 1 & 0 & 1 & 0\\-1 & 3 & 4 & 0 & 0 & 1\end{array} \right] \xrightarrow{-R_1\to R_1}\left[ \begin{array}{rrr|rrr} 1 & -1 & -2 & -1 & 0 & 0\\3 & -1 & 1 & 0 & 1 & 0\\-1 & 3 & 4 & 0 & 0 & 1 \end{array} \right]\\ \xrightarrow{R_2-3R_1\to R_2, R_1+R_3\to R_3} \left[ \begin{array}{rrr|rrr} 1 & -1 & -2 & -1 & 0 & 0\\0 & 2 & 7 & 3 & 1 & 0\\0 & 2 & 2 & -1 & 0 & 1\end{array} \right] \xrightarrow{R_2/2 \to R_2}\left[ \begin{array}{rrr|rrr} 1 & -1 & -2 & -1 & 0 & 0\\0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} & 0\\0 & 2 & 2 & -1 & 0 & 1 \end{array} \right] \\ \xrightarrow{R_1+R_2\to R_1, R_3-2R_2\to R_2}\left[ \begin{array}{rrr|rrr} 1 & 0 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} & 0\\0 & 0 & -5 & -4 & -1 & 1 \end{array} \right] \xrightarrow{R_3/(-5) \to R_3}\left[ \begin{array}{rrr|rrr} 1 & 0 & \frac{3}{2} & \frac{1}{2} & \frac{1}{2} & 0\\0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} & 0\\0 & 0 & 1 & \frac{4}{5} & \frac{1}{5} & - \frac{1}{5}\end{array} \right]\\ \xrightarrow{R_1-1.5R_3\to R_1, R_2-3.5R_3\to R_2}\left[ \begin{array}{rrr|rrr} 1 & 0 & 0 & - \frac{7}{10} & \frac{1}{5} & \frac{3}{10}\\0 & 1 & 0 & - \frac{13}{10} & - \frac{1}{5} & \frac{7}{10}\\0 & 0 & 1 & \frac{4}{5} & \frac{1}{5} & - \frac{1}{5}\end{array} \right] \Rightarrow \bbox[red, 2pt]{A^{-1}=\left[ \begin{array}{rrr|rrr}- \frac{7}{10} & \frac{1}{5} & \frac{3}{10}\\- \frac{13}{10} & - \frac{1}{5} & \frac{7}{10}\\\frac{4}{5} & \frac{1}{5} & - \frac{1}{5} \end{array} \right]}
解答:\mathcal F(f(x))=\int_{-\infty}^\infty f(x)e^{-i\omega t}\,dt =\int_{-1}^1 e^{-i\omega t}\,dt =\left.\left[ {1\over -i\omega} e^{-i\omega t} \right] \right|_{-1}^1 = {1\over -i\omega}\left( e^{-i\omega}-e^{i\omega}\right) \\={1\over -i\omega}(-2i\sin \omega)= \bbox[red, 2pt]{2\sin \omega\over \omega}解答:ex. digital signal processing...
==================== END ======================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言