113年法務部調查局調查人員考試試題
考 試 別:調查人員
等 別:三等考試
類 科 組:電子科學組
科 目:工程數學
解答:(一)A=[21−23−2031−3]⇒det(A−λI)=|2−λ1−23−2−λ031−3−λ|=0⇒−(λ−1)(λ+3)(λ+1)=0⇒特徵值λ=1,−3,−1(二)λ1=1⇒(A−λ1I)v=0⇒[11−23−3031−4][x1x2x3]=0⇒{x1=x3x2=x3⇒v=x3(111) choose v1=(111)λ2=−3⇒(A−λ2I)v=0⇒[51−2310310][x1x2x3]=0⇒{x1=x3x2+3x3=0⇒v=x3(1−31) choose v2=(1−31)λ3=−1⇒(A−λ3I)v=0⇒[31−23−1031−2][x1x2x3]=0⇒{3x1=x3x2=x3⇒v=x3(1/311) choose v3=(1/311)⇒{D=[λ1000λ2000λ3]=[1000−3000−1]P=[v1v2v3]=[11131−31111]⇒{D=[1000−3000−1]P=[11131−31111](三)det(A−λ)=0⇒(λ−1)(λ+3)(λ+1)=λ3+3λ2−λ−3=0⇒A3+3A2−A−3I=0⇒A4+3A3−A2−5A+2I=A(A3+3A2−A−3I)−2A+2I=−2A+2I=−2[21−23−2031−3]+2[100010001]=[−2−24−660−6−28]解答:A=[1−415]=[−2−412]+3[1001]=B+3I⇒B2=[−2−412]2=0⇒Bn=0,n≥2⇒eBt=I+Bt+(Bt)22!+(Bt)33!+⋯=I+Bt=[−2t+1−4tt2t+1]⇒eAt=e(Bt+3tI)=eBt⋅e3tI=[−2t+1−4tt2t+1][e3t00e3t]=[(−2t+1)e3t−4te3tte3t(2t+1)e3t]
解答:(一)f(z)=2z2+9z+5(z+2)2(z−3)=∞∑n=0an(z−1)n=a0+a1(z−1)+a2(z−1)2+a3(z−1)3+⋯⇒f′(z)=−2(z3+7z2+6z+17)(z−3)2(z+2)3=a1+2a2(z−1)+3a3(z−1)2+⋯⇒f″
解答:L\{y(t)\} +2L\{y(t)\}L\{ \cos 2t\} =L\{ e^{-t}\} \Rightarrow Y(s)+2 Y(s)\cdot {s\over s^2+4} ={1\over s+1} \\ \Rightarrow Y(s)= {1\over s+1} \cdot {s^2+4\over s^2+2s+4} ={-2s-8\over 3(s^2+2s+4)} +{5\over 3(s+1)} \\=-{2\over 3}\cdot {s+1\over (s+1)^2+3}-2\cdot {1\over (s+1)^2+3} +{5\over 3}\cdot {1\over s+1} \\ \Rightarrow y(t) =L^{-1}\{Y(s)\} =-{2\over 3}L^{-1} \left\{ {s+1\over (s+1)^2+3} \right\}-2 L^{-1} \left\{ {1\over (s+1)^2+3} \right\}+{5\over 3} L^{-1}\left\{ {1\over s+1} \right\} \\\Rightarrow \bbox[red, 2pt]{y(t) =-{2\over 3}e^{-t} \cos (\sqrt 3t)-{2\over \sqrt 3}e^{-t} \sin(\sqrt 3 t)+{5\over 3}e^{-t}}
解答:\textbf{(一)}\;\iint f_{X,Y}\,dxdy =1 \Rightarrow \int_0^{10} \int_0^\infty be^{-(x+y)}\,dy\,dx =\int_0^{10} \left. \left[ -be^{-(x+y)}\right] \right|_0^\infty \,dx =\int_0^{10} be^{-x} \,dx \\= \left. \left[ -be^{-x} \right] \right|_0^{10} =b(1-e^{-10}) =1 \Rightarrow b=\bbox[red, 2pt]{1\over 1-e^{-10}} \\ \textbf{(二)}\; f_{X}(x) =\int_0^\infty f_{X,Y}(x,y)\,dy =\left. \left[ -be^{-(x+y)}\right] \right|_0^\infty =be^{-x} \Rightarrow \bbox[red, 2pt]{f_X(x) =\begin{cases} {1\over 1-e^{-10}} e^{-x},&0 \lt x\lt 10 \\0,& 其他\end{cases}} \\\textbf{(三)}f_Y(y) =\int_0^{10} f_{X,Y}(x,y) \,dx=\left. \left[ -be^{-(x+y)}\right] \right|_0^{10} =e^{-y } \Rightarrow \bbox[red, 2pt]{f_Y{(y)} =\begin{cases} e^{-y},&0 \lt y\lt\infty \\0,& 其他\end{cases}}
====================== END ===================
解題僅供參考,國考歷年試題及詳解
沒有留言:
張貼留言