Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年8月23日 星期五

113年鳳新高中教甄-數學詳解

 國立鳳新高級中學 113 學年度第 1 次教師甄選

一、 計算證明題 (第 1 題至第 10 題每題 8 分, 第 11 題至第 12 題每題 10 分)

解答:

OI=73+6+7OA+63+6+7OB+33+6+7OC=716OA+616OB+316OCOIBC=716OA(BA+AC)+616OBBC+316OCBC=716(12321262)+616(1272)+316(1272)=212
解答:f(θ)=sin2θ+2sinθf(θ)=02cos2θ+2cosθ=04cos2θ+2cosθ2=02(2cosθ1)(cosθ+1)=0{cosθ=1/2θ=π/3cosθ=1θ=π,f(π/3)=32+3=332{:33/2θ=π/3
解答:(1)2(25)1Case I :6×14=84Case II :4×11=445(84+44)=640
解答:
¯BCD¯AD==h¯BD=¯CD=4h2¯CD=24h2cosBPiC=cosπ=1=PiBPiC¯BPi¯CPi¯BPi¯CPi=PiBPiC=(BA+APi)(CA+APi)mi=¯APi2+¯BPi¯CPi=(APiAPi)(BA+APi)(CA+APi)=BACABAAPiAPiCA=BACA(BD+DA)APiAPi(CD+DA)=BACA2APiDA(BD+CD=0)=ABAC+2APiAD=¯AB¯ACcosA+2h2=44+4(24h2)2222+2h2=4m1++m100=100×4=400
A=90¯AD=¯CD=¯DB=2mi=¯APi2+¯BPi¯CPi=(2+¯DP12)+(2¯DPi)(2+¯DPi)=4100i=1mi=400

解答:
E¯AD¯BC¯ADA¯BE¯EC=¯AB¯AC=35{¯BE=21/8¯CE=35/8cosA=32+5272235=12A=120BAE=60cosBAE=12=32+¯AE2(21/8)223¯AE¯AE=158ABE=ADCABECDE(AAA)¯AE¯BE=¯CE¯DE¯DE=498¯AD=158+498=8¯BE¯AB=¯EI¯AI¯AI=815¯AE=1¯ID¯AD=818=78
解答:MX(t)=E(etX)=nk=0etkpkqnk=(pet+q)n,p+q=1MX(t)=n(pet+q)n1petMX(0)=npMX(t)=MX(t)+n(n1)(pet+q)n2p2e2tMX(0)=np+n(n1)p2MX(t)=MX(t)+2n(n1)(pet+q)n2p2e2t+n(n1)(n2)(pet+q)n3p3e3tE(X3)=MX(0)=np+n(n1)p2+2n(n1)p2+n(n1)(n2)p3=1+0.9+1.8+0.72=4.42
解答:{k=(x+x22024)(y+y22024)=xy+xy22024+yx2204+(x22024)(y22024)2024=(xx22024)(yy22024)=xyxy22024yx2204+(x22024)(y22024){:2024k=20242024k=2024:k2024=2(xy22024+yx22024)xy22024=yx22024{x=yx=2024x=y(xx22024)(xx22024)=20242024,x=y=20243x22y2+3x3y2023=x22023=1
解答:f(x)=5x35(k+1)x2+(71k1)x+166k=(x1)(5x25kx+66k1)=(x1)5(xα)(xβ)1,α,βf(665)=(6651)(5(665)266k+66k1)=(6651)5(665α)(665β)435651=5(665α)(665β)4351=19×229=(665α)(665β){5α66=195β66=229{α=17β=59{α=59β=17k=α+β=76
解答:

{Γ1:y=x2+aΓ2:y=x2aΓ3:y2=xaΓ4:y2=xa{Γ1Γ3L1:x=yΓ2Γ4L1Γ1Γ4L2:x=yΓ2Γ3L2{Γ1Γ3L1Γ2Γ4L1Γ1Γ4L2Γ2Γ3L2x2x+a=014a=0a=14{(1/2,1/2)(1/2,1/2)(1/2,1/2)(1/2,1/2)=81/20(x2+ax)dx=8124=13
解答:{L1:x31=y2=z+22u=(1,2,2)L2:x3=y21=z+12v=(3,1,2)n=u×v=(2,4,5)L2E:2x4(y2)5(z+1)=02x+4y+5z=3A(3,0,2)L1=d(A,E)=735=PQRSPQR=13(735)2=493135
解答:

{|z1|=|z1+z2|=3|z2z1|=33{z1=3eiθz2=3ei(θ+2π/3){z1¯z2=9ei(2π/3)¯z1z2=9ei(2π/3)(z1¯z2)2000+(¯z1z2)2000=92000(ei(4000π/3)+ei(4000π/3))=340002cos40003π=340002cos43π=34000log|(z1¯z2)2000+(¯z1z2)2000|=log34000=4000log3
解答:西:((1n+1)2+(1n+2)2+(1n+n)2)(12++12)(1n+1+1n+2++12n)2:((1n+1)2+(1n+2)2+(1n+n)2)n(1n(n+1)+1(n+1)(n+2)++1(2n1)(2n))n=(1n1n+1+1n+11n+2++12n112n)n=(1n12n)n=12(1n+1+1n+2++12n)2121n+1+1n+2++12n22,

======================== END ====================

解題僅供參考,教甄其他試題及詳解






沒有留言:

張貼留言