Processing math: 100%

2024年8月3日 星期六

113年彰化高中教甄-數學詳解

 國立彰化高級中學113學年度第 1 次教師甄選

填充題

解答:{a1=db1=d2a21+a22+a23b1+b2+b3=d2+4d2+9d2d2+d2r+d2r2=141+r+r2=nN0<r<11<1+r+r2<35n13r2+r+114n=0D=14(114n)=563nnn=8D=4r=12

解答:2yx=23(x+3y)x236xx+3y+2yx=6xx+3y+23(x+3y)x23223623=423=103

解答:an1=an+an2a2=a1+a3a3=a2+a4+an1=an2+ansn1a1=Sn2+Sna1a2Sn1=Sn2+an1an1+Sna20=an1+Sna2Sn=an1+a2(1){an1=an2+anan=an1+an+1an1an2=an=an1+an+1an+1=an2an=an3an=an6(2)S2024=S2023+a20242023=2024+a2024a2024=12024=2 mod 6a2024=a2=1S2025=a2024+a2=a2+a2=11=2


解答:{cos(ax+b)2π0<a<1|b|<ππ<b<πf(5π8)=03cos(5aπ8+b)=05aπ8+b=π2,π2,3π2f(11π8)=33cos(11aπ8+b)=311aπ8+b=0,π,2π3×3=9,:{5aπ8+b=π211aπ8+b=0{a=2/3b=11π/12ab


解答:12|z|2=2|z+2|2+|z2+1|2+3112zˉz=2(z+2)(ˉz+2)+(z2+1)(ˉz2+1)+3112zˉz=(2zˉz+4z+4ˉz+8)+(z2ˉz2+z2+ˉz2+1)+31(z2ˉz212zˉz+36)+(z2+ˉz2+22+2(zˉz+2z+2ˉz))=0(zˉz6)2+(z+ˉz+2)2=0{zˉz=6ˉz=6/zz+ˉz=2z+6z=z+ˉz=2

解答:{OGHGH=2OG(1)|OA+OB+OC|=3|OG+GA+OG+GB+OG+GC|=|3OG+0|=3|OG|=33|HA+HB+HC|=|3HG+0|=3|GH|=32|OG| by (1)=3233=23
解答:

解答:z7=1(1z)(1+z+z2++z6)=01+z++z6=0z+z2++z6=1{α=z+z2+z4β=z3+z5+z6α+β=z+z2++z6=1αβ=(z+z2+z4)(z3+z5+z6)=z4(1+z+z2++z6+2z3)=z4(0+2z3)=2z7=2{α+β=1αβ=2α,βx2+x+2=0α=z+z2+z4=1±7i2


解答:(a+b+c)(b+cabc+c+abca+a+bcab)=1432=8(b+c)2aabc+(c+a)2b2ca+(a+b)2c2ab=8(b+c)2aabc4+(c+a)2b2ca4+(a+b)2c2ab=0(bc)2aabc+(ca)2b2ca+(a+b)2c2ab=0(bc+a)(bca)bc+(cab)(ca+b)ca+(a+b+c)(a+bc)ab=0(a+bc)(bcabc+abcca+a+b+cab)=0a+bcabc(abaca2+abb2bc+ac+bc+c2)=0a+bcabc(c2(ab)2)=(a+bc)(c+ab)(ca+b)abc=0{a+b=cb+c=ac+a=b{(a)2+(b)2=(c)2(b)2+(c)2=(a)2(c)2+(a)2=(b)2


解答:{¯AB=3¯AC=7¯BC=10¯BC2=¯AB2+¯AC2BAC=90{A(0,0,0)B(3,0,0)C(0,7,0)D(a,b,c){¯AD=10¯BD=7¯CD=7{a2+b2+c2=10(a3)2+b2+c2=7a2+(b7)2+c2=7{a=3/3b=5/7c=247D(3,577,2427)=13(1237)2427=2

解答:E=2×142+(1+E)(114)+(2+E)(14(114))54+1516E=EE=20

解答:((sin1012θcos1011ϕ)2+(cos1012θsin1011ϕ)2)((cos1011ϕsin1010θ)2+(sin1011ϕcos1010θ)2)(sin2θ+cos2θ)21((cos1011ϕsin1010θ)2+(sin1011ϕcos1010θ)2)1(cos1011ϕsin1010θ)2+(sin1011ϕcos1010θ)2=1sin2022θcos2022ϕ=cos2022θsin2022ϕsinθsinϕ=cosθcosϕcos(θ+ϕ)=0θ+ϕ=π2sinθ=sin(π2ϕ)=cosϕsin2023θcos2023ϕ=0
解答:{a+b+c=5a+b=5cab+bc+ca=7ab=7c(a+b)ab=7c(5c)=c25c+7abc=c35c2+7cf(c)=c35c2+7c,f(c)=3c210c+7=0(3c7)(c1)=0{c=7/3a+b=5c=8/3ab=7c(a+b)=77383=79c=1a+b=5c=4ab=7c(a+b)=714=3{abc=7973=4927abc=31=3{M=3m=49/27M+m=13027

解答:a,b,c,d117(1+2)a+c(16+17)3a+c3317(ab+cd)a+c(b+d)=0,±17,{(a+c)(b+d)=0308(a+c)(b+d)=±17168,476

解答:,,


解答:a+b+c=29H3293=C2826=37829=27+1+1=25+2+2==1+14+14,14143=42a+b+c=2937842=336d+e=2929=1+28=2+27==15+1414d,ea,b,c143=11,11×2=22(d,e);336×22=7392

解答:

y=x2+bx+c=(xα)2β2(β>0){A(αβ,0)B(α+β,0)C(0,α2β2<0)α<βM(α,β2)SABM=122ββ2=β3():SACM=18SABMSABM+SACM=9SABM=β3=8β=2(2,5)5=(2α)24α=1y=(x1)24y=x22x3=x2+bx+c(b,c)=(2,3)

計算證明題

解答:
解答: Lagrange ,{f(x,y,z)=(x+y)2+(y+z)2+(z+x)2g(x,y,z)=(x+y+z)xyz9{fx=λgxfy=λgyfz=λgzg=0{2(2x+y+z)=λ(yz(2x+y+z))(1)2(x+2y+z)=λ(xz(x+2y+z))(2)2(x+y+2z)=λ(xy(x+y+2z))(3)(x+y+z)xyz=9(4){(1)(2)=2x+y+zx+2y+z=y(2x+y+z)x(x+2y+z)(2)(3)=x+2y+zx+y+2z=z(x+2y+z)y(x+y+2zx=y=z(4)3x4=9x=y=z=43f=f(43,43,43)=12318,
解答:{pq{p=det(A),A=[acbbaccba]q=det(B),B=[dfeedffed]p×q=det(A)det(B)=det(AB)=|ad+bf+cecd+af+bebd+cf+aebd+cf+aead+bf+cecd+af+becd+af+bebd+cf+aead+bf+ce|=(ad+bf+ce)3+(bd+cf+ae)3+(cd+af+be)33(ad+bf+ce)(bd+cf+ae)(cd+af+be)p×q,


================ END =================

解題僅供參考,其他歷年試題及詳解

1 則留言:

  1. 請問填充15,要如何利用已知條件求角度?

    回覆刪除