2024年8月16日 星期五

113年嘉科實中雙語部教甄-數學詳解

 國立嘉科實驗高級中學113學年度雙語部教師甄選

第一部份 填充題 50%

解答:|z2|=3(x2)2+y2=3k=yxy=kx(x2)2+k2x2=3k=3(x2)2x2f(x)=3(x2)2x2f(x)=2(x2)x2+6+2(x2)2x3x=12k=f(1/2)=3
解答:{log9x+log9y+log3z=2log16x+log4y+log16z=1log5x+log25y+log25z=0{log3zxy=2log4yxz=1log5xyz=0{zxy=9yxz=4xyz=1(xyz)2=36xyz=6{z6z=9y6y=4x6x=1{z=27/2y=8/3x=1/6(x,y,z)=(16,83,272)
解答:f(x)=2xax+b{f(1)=2a+b=1f(12)=1a/2+b=23{a+b=2a+2b=3{a=1b=1f(x)=2xx+1xn=2xn1xn1+11xn=xn1+12xn1=121xn1+12yn=1xn,yn=12yn1+12=12(12yn2+12)+12=122yn2+122+12==12n1y1+12n1+12n2++12=22n1+12n1+12n2++12=22n1+112n1=1+12n1xn=11+(12)n1
解答:O,SABC=12¯OB¯AC=2¯AC=4¯AC=2A(2,0)2,4y=f(x)f(x)=k(x2)(x4)f(0)=8k=4k=12y=f(x)=12(x2)(x4)f(3)=12D(3,12)SDBC=123121041401=3
解答::+++=12+(12)212+(12)312+=12(1+122+124+)=1211122=23nP(n)P(n)=(1P(n1))23+P(n1)13=13P(n1)+23=(13)n1P(1)+23((13)n2+(13)n3++1)=(13)n1P(1)+2334(1(13)n1)=(13)n123+1212(13)n1=12+16(13)n1=1212(13)n=12[1(13)n]
解答:x225+y29=1{a=5b=3c=4{F(4,0)A(4,0)MBF:¯MB<¯MF+¯FB¯MA+¯MB<¯MA+¯MF+¯FB=2a+¯FB=10+210¯MA+¯MB10+210
解答:Case I 3,1,1,1,1:C735!C51()×5!(C73C51)5!=3600Cases II 2,2,1,1,1:C72C522!×5!C52×5!(C72C522!C52)×5!=11400Case I + Case II=3600+11400=15000
解答:5sin(10k)2sin2(10k)22sin2(10k)5sin(10k)+20(2sin(10k)1)(sin(10k)2)012sin(10k)2k=3,4,5,6,7,8,9,10,11,12,13,14,1513
解答:137=P(X>137)=P(Z>1371335)=P(Z>0.8)=0.2119+=0.7×0.21190.7×0.2119+0.3×0.8413=7×21197×2119+3×8413=1483340072

解答:
{¯DP=¯PQ=¯QB=aDPR=QBC=θRPQ=α{¯CD=¯DR+¯MQ+¯QN=2asinθ+asinα¯BC=¯BN+¯BN¯PM=2acosθacosα:¯CD=¯BC2sinθ+sinα=2cosθcosα2(sinθcosθ)=(sinα+cosα)4(sinθcosθ)2=(sinα+cosα)244sin2θ=1+sin2αsin2θ=3sin2α412sin2θ1302θ9015θ45θ15

第二部份 計算證明題 30%

解答:(1)PF(1,0)Py1PF(1,0)Px=1{x=1F(1,0)y2=4x(2) ¯AB=¯CD,{A(a24,a)B(b24,b)C(b24,b)D(a24,a){AD=(0,2a)CB=(0,2b)ADCB=4abP,QA,BxAPFBQF(AAA)¯AP¯BQ=¯AF=d(L,A)¯BF=d(L,B)ab=a2/4+1b2/4+1=a2+4b2+4ab2+4a=a2b+4bab(ab)4(ab)=0(ab4)(ab)=0ab=4(a=b,¯CD=x,)ADCB=16


解答:
解答:s=a+b+c2(1as)+(1bs)+(1cs)33(1as)(1bs)(1cs)3a+b+cs=32ss=133(1as)(1bs)(1cs)(1as)(1bs)(1cs)127(1as)(1bs)(1cs)133=39S=s(sa)(sb)(sc)=s2(1as)(1bs)(1cs)39s2=39(a+b+c2)2=34(a+b+c3)2S34(a+b+c3)2.

=================== END ==================
解題僅供參考,教甄歷年試題及詳解


3 則留言: