Loading [MathJax]/jax/output/CommonHTML/jax.js

2024年8月31日 星期六

113年嘉義中學教甄-數學詳解

 國立嘉義高級中學113學年度第1次教師甄選

一、 填充題:共 18 題,每題 5 分,合計 90 分。

解答:logab=tt+6t=5t25t+6=0(t3)(t2)=0{logab=3b=a3(a,b)=(2,8),(3,27),,(12,1728),11logab=2b=a2(a,b)=(2,4),(3,9),,(44,1936),43,11+43=54


解答:

{Q(a2,b2),Q(a2+3,b2+4)L3m3=4/3R(a3,b3),R(a3+5,b312)L2m2=12/5m1=¯QR=¯QR{b3b2a3a2=m1(1)b3b216a3a2+2=m1(2)(1)b3b2=m1(a3a2)(2)m1(a3a2)16a3a2+2=m116=2m1m1=8(m1,m2,m3)=(8,125,43)

解答:|512i13z3|=|512i13z5|z4=512i13z2=eiθz4=ei2θ=512i13tan2θ=12/135/13=125=2tanθ1tan2θ6tan2θ5tanθ6=0(3tanθ+2)(2tanθ3)=0ba=tanθ=23z2tanθ<0tanθ32

解答:A=[0101100010100100010100101010000110000101010010100010010100011010]A9=[0492104921492104920049210492100492104920049210492149200492104921049210049200492149210492000492104921049210492049210492104920049210049210492104920049214921049210]A9[10000000]=[04921049214921049200]AG4920
解答:t=cosx+sinxt2=1+2sinxcosxsinxcosx=t212{tanx+cotx=sinxcosx+cosxsinx=1cosxsinx=2t21secx+cscx=1cosx+1sinx=sinx+cosxcosxsinx=t(t21)/2=2tt21f(x)=g(t)=|t+2t21+2tt21|=|t+2(t+1)t21|=|t+2t1|=|t1+2t1+1||22+1|=221


解答:f(x)=x32xf(x)=3x22<0f(x)f(ax23ax)>f(a+26)ax23ax<a+26g(x)=ax23axa26<0{<09a2+4a(a+26)<013a(a+8)<08<a<0a=026<0a=7,6,,1,08

解答:=10:(a,b,c)=(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4)=6+6+3+6+3+3=27p=2763=18=50p+50p2+=50(p+p2+)=50p1p=507

解答:g(x)=xf(x)pqrg(p)=g(q)=g(r)=0g(x)=xf(x)pqr=a(xp)(xq)(xr)f(x)=1x(ax3a(p+q+r)x2+a(pq+qr+rp)xapqr+pqr)f(x)apqr+pqr=0a=1f(x)=x2(p+q+r)x+pq+qr+rpf(p+q+r)=(p+q+r)2(p+q+r)2+pq+qr+rp=pq+qr+rp
解答:1n10nk=1400n2400n2+(2k1)2=1n20nk=1400n2400n2+k21n10nk=1400n2400n2+(2k)2=1n20nk=1400400+(k/n)21n10nk=1400400+4(k/n)2=200400400+x2dx100400400+4x2dx=20011+(x/20)2dx10011+(x/10)2dx=[20tan1x20]|200[10tan1x10]|100=20π410π4=52π




解答:
[75cosθ75sinθ75sinθ75cosθ]=75[cosθsinθsinθcosθ]θ75A(10,10)¯OA=102¯OA=102×75=1421422=282828=12142102sinθ4+12142102cosθ4784=560(sinθ+cosθ)sinθ+cosθ=751+2sinθcosθ=4925sinθcosθ=1225cosθ=1225sinθsinθ+1225sinθ=7525sin2θ35sinθ+12=0(5sinθ4)(5sinθ3)=0sinθ=45π4<θ<π222<sinθ<1,35<22,sinθ=35


解答:PL:x12=y1=z32P(2t+1,t,2t+3)¯PA+¯PB=(2t6)2+(t6)2+(2t)2+(2t4)2+(t+1)2+(2t+1)2=9t236t+72+9t218t+18=3(t24t+8+t22t+2)=3((t2)2+22+(t1)2+12)=3(¯QC+¯QD),{Q(t,0)xC(2,2)D(1,1)DxD(1,1)Q=¯CDx=(43,0)t=43P=(113,43,13)
解答:
rsinθ=22+4r21=12r12r216r+5=0(6r5)(2r1)=0r=56(r=12,)=53

解答:PΓ:(x1)24+(y+2)29=1P(2cosθ+1,3sinθ2)d(P,L)=|4cosθ3sinθ+10|5{cosθ=4/5sinθ=3/5d(P,L),P(135,195)


解答:{A(1,2,3)B(2,3,1)C(2t,1,1+t){AB=(1,1,2)AC=(2t1,1,4+t)n=AB×AC=(6+t,65t,2t)SABC=12||n||35(t6)2+(5t6)2+4t23655t212t18063145(1.04)t6+3145(3.44)t=1,0,1,2,35
解答:
解答:
16a2=27(5a)2a=75h=16a2=3539=13653539=639
解答:

{y=f(x)={x22xx2x2+2xx2y=g(x)=4x+kk?y=g(x)4{x2f(x)=2x2=4x=3f(3)=3x2f(x)=2x+2=4x=1f(1)=3{g(3)=12+k<3k<9g(1)=4+k>3k>1k<9k>1


解答:=106×1.0224aa(1.02241)1.021106×1.0224a106×1.0224×0.021.0224152871.5a=52872

解答:

{=h=rr3=12h12r=3h4=f(h)=(3h4)2πhf(h)=12(3h4)πh+(3h4)2π=0π(3h4)(334h)=0h=4(h=12)f(h)=16π

二、 計算證明題: 兩小題, 配分寫在各小題後, 共 10

解答:{A(xa,ya)B(xb,yb)C(xc,yc){A(axa+bya,cxa+dya)B(axb+byb,cxb+dyb)C(axc+byc,cxc+dyc){Δ=12xaya1xbyb1xcyc1=12001xbxaybya1xcxaycya1Δ=12axa+byacxa+dya1axb+bybcxb+dyb1axc+byccxc+dyc1=12001a(xbxa)+b(ybya)c(xbxa)+d(ybya)1a(xcxa)+b(ycya)c(xcxa)+d(ycya)1Δ=(adbc)Δ(),
解答:{u=2x+y113v=x+3y2024|(u,v)(x,y)|=2113=5|u|+|v|=5=50|2x+y113|+|x+3y2024|=505=10
==================== END ===============
解題僅供參考,其他教甄試題及詳解


沒有留言:

張貼留言