國立嘉義高級中學113學年度第1次教師甄選
一、 填充題:共 18 題,每題 5 分,合計 90 分。
解答:假設logab=t⇒t+6t=5⇒t2−5t+6=0⇒(t−3)(t−2)=0⇒{logab=3⇒b=a3⇒(a,b)=(2,8),(3,27),…,(12,1728),共11組logab=2⇒b=a2⇒(a,b)=(2,4),(3,9),…,(44,1936),共43組⇒,共11+43=54組{Q(a2,b2),Q′(a2+3,b2+4)∈L3⇒m3=4/3R(a3,b3),R′(a3+5,b3−12)∈L2⇒m2=−12/5m1=¯QR斜率=¯Q′R′斜率⇒{b3−b2a3−a2=m1⋯(1)b3−b2−16a3−a2+2=m1⋯(2)由(1)⇒b3−b2=m1(a3−a2)代入(2)⇒m1(a3−a2)−16a3−a2+2=m1⇒−16=2m1⇒m1=−8⇒(m1,m2,m3)=(−8,−125,43)

解答:|5−12i13−z3|=|5−12i13−z5|⇒z4=5−12i13假設z2=eiθ⇒z4=ei2θ=5−12i13⇒tan2θ=−12/135/13=−125=2tanθ1−tan2θ⇒6tan2θ−5tanθ−6=0⇒(3tanθ+2)(2tanθ−3)=0⇒ba=tanθ=−23z2在第二象限⇒tanθ<0⇒tanθ≠32
解答:轉換矩陣A=[0101100010100100010100101010000110000101010010100010010100011010]⇒A9=[0492104921492104920049210492100492104920049210492149200492104921049210049200492149210492000492104921049210492049210492104920049210049210492104920049214921049210]⇒A9[10000000]=[04921049214921049200]⇒A→G有4920種路線

解答:f(x)=−x3−2x⇒f′(x)=−3x2−2<0⇒f(x)為嚴格遞減因此f(ax2−3ax)>f(a+26)⇒ax2−3ax<a+26⇒g(x)=ax2−3ax−a−26<0⇒{判別式<0⇒9a2+4a(a+26)<0⇒13a(a+8)<0⇒−8<a<0a=0⇒−26<0符合要求⇒a=−7,−6,…,−1,0,共8個整數

解答:點數和=10的情形:(a,b,c)=(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4)其排列數總和=6+6+3+6+3+3=27⇒機率p=2763=18⇒期望值=50⋅p+50⋅p2+⋯=50(p+p2+⋯)=50⋅p1−p=507

解答:取g(x)=xf(x)−pqr⇒g(p)=g(q)=g(r)=0⇒g(x)=xf(x)−pqr=a(x−p)(x−q)(x−r)⇒f(x)=1x(ax3−a(p+q+r)x2+a(pq+qr+rp)x−apqr+pqr)由於f(x)為二次式,因此−apqr+pqr=0⇒a=1⇒f(x)=x2−(p+q+r)x+pq+qr+rp⇒f(p+q+r)=(p+q+r)2−(p+q+r)2+pq+qr+rp=pq+qr+rp
解答:1n10n∑k=1400n2400n2+(2k−1)2=1n20n∑k=1400n2400n2+k2−1n10n∑k=1400n2400n2+(2k)2=1n20n∑k=1400400+(k/n)2−1n10n∑k=1400400+4(k/n)2=∫200400400+x2dx−∫100400400+4x2dx=∫20011+(x/20)2dx−∫10011+(x/10)2dx=[20tan−1x20]|200−[10tan−1x10]|100=20⋅π4−10⋅π4=52π
解答:

解答:P∈L:x−12=y1=z−3−2⇒P(2t+1,t,−2t+3)⇒¯PA+¯PB=√(2t−6)2+(t−6)2+(−2t)2+√(2t−4)2+(t+1)2+(−2t+1)2=√9t2−36t+72+√9t2−18t+18=3(√t2−4t+8+√t2−2t+2)=3(√(t−2)2+22+√(t−1)2+12)=3(¯QC+¯QD),其中{Q(t,0)∈x軸C(2,2)D(1,1)D對稱x軸的對稱點D′(1,−1)⇒Q=¯CD′∩x軸=(43,0)⇒t=43⇒P=(113,43,13)
解答:

解答:P∈Γ:(x−1)24+(y+2)29=1⇒P(2cosθ+1,3sinθ−2)⇒d(P,L)=|4cosθ−3sinθ+10|√5⇒當{cosθ=4/5sinθ=−3/5時,d(P,L)有最大值,此時P(135,−195)

解答:{A(1,2,3)B(2,3,1)C(2t,1,−1+t)⇒{→AB=(1,1,−2)→AC=(2t−1,−1,−4+t)⇒→n=→AB×→AC=(−6+t,6−5t,−2t)⇒S△ABC=12||→n||≤3√5⇒(t−6)2+(5t−6)2+4t2≤36⋅5⇒5t2−12t−18≤0⇒6−3√145(≈−1.04)≤t≤6+3√145(≈3.44)⇒t=−1,0,1,2,3,共5個
解答:
解答:

解答:|5−12i13−z3|=|5−12i13−z5|⇒z4=5−12i13假設z2=eiθ⇒z4=ei2θ=5−12i13⇒tan2θ=−12/135/13=−125=2tanθ1−tan2θ⇒6tan2θ−5tanθ−6=0⇒(3tanθ+2)(2tanθ−3)=0⇒ba=tanθ=−23z2在第二象限⇒tanθ<0⇒tanθ≠32
解答:轉換矩陣A=[0101100010100100010100101010000110000101010010100010010100011010]⇒A9=[0492104921492104920049210492100492104920049210492149200492104921049210049200492149210492000492104921049210492049210492104920049210049210492104920049214921049210]⇒A9[10000000]=[04921049214921049200]⇒A→G有4920種路線
解答:假設t=cosx+sinx⇒t2=1+2sinxcosx⇒sinxcosx=t2−12⇒{tanx+cotx=sinxcosx+cosxsinx=1cosxsinx=2t2−1secx+cscx=1cosx+1sinx=sinx+cosxcosxsinx=t(t2−1)/2=2tt2−1⇒原式f(x)=g(t)=|t+2t2−1+2tt2−1|=|t+2(t+1)t2−1|=|t+2t−1|=|t−1+2t−1+1|≥|−2√2+1|=2√2−1

解答:f(x)=−x3−2x⇒f′(x)=−3x2−2<0⇒f(x)為嚴格遞減因此f(ax2−3ax)>f(a+26)⇒ax2−3ax<a+26⇒g(x)=ax2−3ax−a−26<0⇒{判別式<0⇒9a2+4a(a+26)<0⇒13a(a+8)<0⇒−8<a<0a=0⇒−26<0符合要求⇒a=−7,−6,…,−1,0,共8個整數

解答:點數和=10的情形:(a,b,c)=(1,3,6),(1,4,5),(2,2,6),(2,3,5),(2,4,4),(3,3,4)其排列數總和=6+6+3+6+3+3=27⇒機率p=2763=18⇒期望值=50⋅p+50⋅p2+⋯=50(p+p2+⋯)=50⋅p1−p=507

解答:取g(x)=xf(x)−pqr⇒g(p)=g(q)=g(r)=0⇒g(x)=xf(x)−pqr=a(x−p)(x−q)(x−r)⇒f(x)=1x(ax3−a(p+q+r)x2+a(pq+qr+rp)x−apqr+pqr)由於f(x)為二次式,因此−apqr+pqr=0⇒a=1⇒f(x)=x2−(p+q+r)x+pq+qr+rp⇒f(p+q+r)=(p+q+r)2−(p+q+r)2+pq+qr+rp=pq+qr+rp
解答:1n10n∑k=1400n2400n2+(2k−1)2=1n20n∑k=1400n2400n2+k2−1n10n∑k=1400n2400n2+(2k)2=1n20n∑k=1400400+(k/n)2−1n10n∑k=1400400+4(k/n)2=∫200400400+x2dx−∫100400400+4x2dx=∫20011+(x/20)2dx−∫10011+(x/10)2dx=[20tan−1x20]|200−[10tan−1x10]|100=20⋅π4−10⋅π4=52π
解答:
[75cosθ−75sinθ75sinθ75cosθ]=75[cosθsinθsinθcosθ]即旋轉θ後再將與原點距離變為原來的75倍A(10,10)⇒¯OA=10√2⇒¯OA′=10√2×75=14√2⇒變換後的邊長變為14√2⋅√2=28⇒變換後的面積變為28⋅28=12⋅14√2⋅10√2sinθ⋅4+12⋅14√2⋅10√2cosθ⋅4⇒784=560(sinθ+cosθ)⇒sinθ+cosθ=75⇒1+2sinθcosθ=4925⇒sinθcosθ=1225⇒cosθ=1225sinθ⇒sinθ+1225sinθ=75⇒25sin2θ−35sinθ+12=0⇒(5sinθ−4)(5sinθ−3)=0⇒sinθ=45π4<θ<π2⇒√22<sinθ<1,而35<√22,因此sinθ=35不合

解答:P∈L:x−12=y1=z−3−2⇒P(2t+1,t,−2t+3)⇒¯PA+¯PB=√(2t−6)2+(t−6)2+(−2t)2+√(2t−4)2+(t+1)2+(−2t+1)2=√9t2−36t+72+√9t2−18t+18=3(√t2−4t+8+√t2−2t+2)=3(√(t−2)2+22+√(t−1)2+12)=3(¯QC+¯QD),其中{Q(t,0)∈x軸C(2,2)D(1,1)D對稱x軸的對稱點D′(1,−1)⇒Q=¯CD′∩x軸=(43,0)⇒t=43⇒P=(113,43,13)
解答:
假設圓半徑r⇒sinθ=22+√4r2−1=12r⇒12r2−16r+5=0⇒(6r−5)(2r−1)=0⇒r=56(r=12不合,違反斜邊最長)⇒直徑=53

解答:P∈Γ:(x−1)24+(y+2)29=1⇒P(2cosθ+1,3sinθ−2)⇒d(P,L)=|4cosθ−3sinθ+10|√5⇒當{cosθ=4/5sinθ=−3/5時,d(P,L)有最大值,此時P(135,−195)

解答:{A(1,2,3)B(2,3,1)C(2t,1,−1+t)⇒{→AB=(1,1,−2)→AC=(2t−1,−1,−4+t)⇒→n=→AB×→AC=(−6+t,6−5t,−2t)⇒S△ABC=12||→n||≤3√5⇒(t−6)2+(5t−6)2+4t2≤36⋅5⇒5t2−12t−18≤0⇒6−3√145(≈−1.04)≤t≤6+3√145(≈3.44)⇒t=−1,0,1,2,3,共5個
解答:
解答:
此題相當於求兩圖形{y=f(x)={x2−2xx≥2−x2+2xx≤2y=g(x)=4x+k只有一個交點時,k的範圍?直線y=g(x)的斜率為4⇒{x≥2⇒f′(x)=2x−2=4⇒x=3⇒f(3)=3x≤2⇒f′(x)=−2x+2=4⇒x=−1⇒f(−1)=−3⇒{g(3)=12+k<3⇒k<−9g(−1)=−4+k>−3⇒k>1⇒k<−9或k>1
解答:借貸兩年本利和=106×1.0224元,若每月底償還a元,則a(1.0224−1)1.02−1≥106×1.0224⇒a≥106×1.0224×0.021.0224−1≈52871.5⇒a=52872
解答:令{u=2x+y−113v=x+3y−2024⇒|∂(u,v)∂(x,y)|=‖2113‖=5|u|+|v|=5所圍面積=50⇒|2x+y−113|+|x+3y−2024|所圍面積=505=10
解答:
假設圓柱體{高=h底面圓半徑=r⇒r3=12−h12⇒r=3−h4⇒圓柱體體積=f(h)=(3−h4)2π⋅h⇒f′(h)=−12(3−h4)π⋅h+(3−h4)2π=0⇒π(3−h4)(3−34h)=0⇒h=4(h=12不合)⇒f(h)=16π
二、 計算證明題: 兩小題, 配分寫在各小題後, 共 10 分
解答:假設{A(xa,ya)B(xb,yb)C(xc,yc)經變換後{A′(axa+bya,cxa+dya)B′(axb+byb,cxb+dyb)C′(axc+byc,cxc+dyc)⇒{Δ=12‖xaya1xbyb1xcyc1‖=12‖001xb−xayb−ya1xc−xayc−ya1‖Δ′=12‖axa+byacxa+dya1axb+bybcxb+dyb1axc+byccxc+dyc1‖=12‖001a(xb−xa)+b(yb−ya)c(xb−xa)+d(yb−ya)1a(xc−xa)+b(yc−ya)c(xc−xa)+d(yc−ya)1‖⇒Δ′=(ad−bc)Δ(用力算),故得證解答:令{u=2x+y−113v=x+3y−2024⇒|∂(u,v)∂(x,y)|=‖2113‖=5|u|+|v|=5所圍面積=50⇒|2x+y−113|+|x+3y−2024|所圍面積=505=10
==================== END ===============
沒有留言:
張貼留言