Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2024年8月20日 星期二

113年大直高中教甄-數學詳解

 臺北市立大直高級中學 113 學年度第一次專任教師甄選

一、填充題(48 分)

解答:2310=2×3×5×7×11,5,Case I 3a,2bc,C53=10Case II 2a,32b,C52C32=3010+30=40
解答:an=SnSn1=(Sn+Sn1)(SnSn1)=Sn+Sn1(Sn+Sn1)(SnSn11)=0Sn=Sn1+1bn=Sn,bn=bn1+1=bn2+2==b1+(n1)=nSn=n2S20S19+S18=202192+182=39+182=363
解答:an=|nn+10n+2n+1n+2n+20n+2|=|nn+1020n+2n+20n+2|=(n+1)(n+2)22(n+1)(n+2)=n(n+1)(n+1)1ak=1k(k+1)(k+2)=12(1k(k+1)1(k+1)(k+2))limnnk=11ak=limn12nk=1(1k(k+1)1(k+1)(k+2))=limn12(1216+16112+1(n+1)(n+2))=limn12(121(n+1)(n+2))=14
解答:{O(0,0)A(0,4)B(4,0)C(0,2)D=(4C+3B)/7=(127,87){L1=AD:y=53x+4L2=AB:x+y=4L3=OD:y=23x{E=L1x=(125,0)F=L2L3=(125,2415)SCEFSOAB=
解答:
解答:

取\cases{A(0,20) \\B(0,0)\\ C(5,0) \\P(5,a)} \Rightarrow L_1=\overleftrightarrow{AP}: y={a-20\over 5}x+20 \Rightarrow Q({100\over 20-a},0) \\ \Rightarrow S_{\triangle ADP} +S_{\triangle PQC} ={1\over 2} \left(5(20-a)+ ({100\over 20-a}-5)a \right) \\ 取f(a)= 5(20-a)+ ({100\over 20-a}-5)a \Rightarrow f'(a)=0 \Rightarrow -10+{100\over 20-a} +{100a\over (20-a)^2} =0 \\ \Rightarrow a^2-40a+200=0 \Rightarrow a= \bbox[red, 2pt]{20-10\sqrt 2}
解答:{x^2\over 9}+{y^2\over 25}=1 \Rightarrow \cases{a=5\\ b=3} \Rightarrow c=4 \\ \Rightarrow 繞長軸(y軸) 旋轉體積= 2\pi \int_0^4 \left( \sqrt{9(1-{y^2\over 25})}\right)^2 \,dy = 2\pi \left. \left[ 9y-{3y^4\over 25} \right] \right|_0^4 = \bbox[red, 2pt]{{1416\over 25} \pi}
解答:\cases{A(-1,3,2) \\B(3,3,4)} \Rightarrow \cases{\overrightarrow{AB} =(4,0,2) \\ P=\overline{AB}中點=(1,3,3)} \Rightarrow 過P且法向量為\overrightarrow{AB}的平面E_p:2x+z=5 \\ \Rightarrow 球心O在直線L=E_p \cap E上 \Rightarrow O(t, 10-{5\over 2}t,5-2t), t\in \mathbb R \\\Rightarrow 球半徑R= \overline{OA} =\sqrt{ (t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2}\\ 令f(t)=(t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2 \Rightarrow f'(t)=0 \Rightarrow t=2 \Rightarrow \cases{R=\sqrt{14} \\O(2,5,1)} \\ \Rightarrow 球方程式: \bbox[red, 2pt]{(x-2)^2+ (y-5)^2+ (z-1)^2=14}

二、非選題(52 分)

解答:柯西不等式:xy= ((x-z)+z) (z+(y-z)) \ge \left(\sqrt{z(x-z)} +\sqrt{z(y-z)} \right)^2 \\ \Rightarrow \sqrt{xy}\ge \sqrt{z(x-z)} +\sqrt{z(y-z)}, \bbox[red, 2pt]{故得證}
解答:


直線L:\cases{\sqrt 3x-z-6=0\\ y=0} \Rightarrow \cases{A=L\cap xy平面=(2\sqrt 3, 0,0) \\ B=L\cap z軸= (0,0,-6)}\\ 假設\cases{球心P(0,0,-r), r為球半徑\\ Q為球與L的切點} \Rightarrow \triangle ABO \sim \triangle PBQ (AAA) \Rightarrow {\overline{OA} \over \overline{AB}}  ={\overline{PQ} \over \overline{ PB}} \\ \Rightarrow {2\sqrt 3\over 4\sqrt 3} ={r\over 6-r} \Rightarrow r=2 \Rightarrow P\bbox[red, 2pt]{(0,0,-2)}
解答:\bbox[red, 2pt]{n=7}, 參考資料:\href{https://www.sec.ntnu.edu.tw/uploads/asset/data/625640e3381784d09345bce2/09-97050.pdf}{中學生通訊解題第五十九期}
解答:


==================== END =============================
解題僅供參考,教甄歷年試題及詳解











沒有留言:

張貼留言