臺北市立大直高級中學 113 學年度第一次專任教師甄選
一、填充題(48 分)
解答:2310=2×3×5×7×11,在5個因數中,Case I 挑3個連乘積當作a,剩下2個作為b及c,有C53=10種可能Case II 挑2個連乘積當作a,剩下3個再挑2個乘積作為b,有C52C32=30種可能共有10+30=40種可能解答:an=Sn−Sn−1=(√Sn+√Sn−1)(√Sn−√Sn−1)=√Sn+√Sn−1⇒(√Sn+√Sn−1)(√Sn−√Sn−1−1)=0⇒√Sn=√Sn−1+1取bn=√Sn,則bn=bn−1+1=bn−2+2=⋯=b1+(n−1)=n⇒Sn=n2⇒S20−S19+S18=202−192+182=39+182=363
解答:an=|nn+10n+2n+1n+2n+20n+2|=|nn+1020n+2n+20n+2|=(n+1)(n+2)2−2(n+1)(n+2)=n(n+1)(n+1)⇒1ak=1k(k+1)(k+2)=12(1k(k+1)−1(k+1)(k+2))⇒limn→∞n∑k=11ak=limn→∞12n∑k=1(1k(k+1)−1(k+1)(k+2))=limn→∞12(12−16+16−112+⋯−1(n+1)(n+2))=limn→∞12(12−1(n+1)(n+2))=14
解答:取{O(0,0)A(0,4)B(4,0)⇒C(0,2)⇒D=(4C+3B)/7=(127,87)⇒{L1=↔AD:y=−53x+4L2=↔AB:x+y=4L3=↔OD:y=23x⇒{E=L1∩x軸=(125,0)F=L2∩L3=(125,2415)⇒S△CEFS△OAB=‖
解答:
解答:
取\cases{A(0,20) \\B(0,0)\\ C(5,0) \\P(5,a)} \Rightarrow L_1=\overleftrightarrow{AP}: y={a-20\over 5}x+20 \Rightarrow Q({100\over 20-a},0) \\ \Rightarrow S_{\triangle ADP} +S_{\triangle PQC} ={1\over 2} \left(5(20-a)+ ({100\over 20-a}-5)a \right) \\ 取f(a)= 5(20-a)+ ({100\over 20-a}-5)a \Rightarrow f'(a)=0 \Rightarrow -10+{100\over 20-a} +{100a\over (20-a)^2} =0 \\ \Rightarrow a^2-40a+200=0 \Rightarrow a= \bbox[red, 2pt]{20-10\sqrt 2}
解答:{x^2\over 9}+{y^2\over 25}=1 \Rightarrow \cases{a=5\\ b=3} \Rightarrow c=4 \\ \Rightarrow 繞長軸(y軸) 旋轉體積= 2\pi \int_0^4 \left( \sqrt{9(1-{y^2\over 25})}\right)^2 \,dy = 2\pi \left. \left[ 9y-{3y^4\over 25} \right] \right|_0^4 = \bbox[red, 2pt]{{1416\over 25} \pi}
解答:\cases{A(-1,3,2) \\B(3,3,4)} \Rightarrow \cases{\overrightarrow{AB} =(4,0,2) \\ P=\overline{AB}中點=(1,3,3)} \Rightarrow 過P且法向量為\overrightarrow{AB}的平面E_p:2x+z=5 \\ \Rightarrow 球心O在直線L=E_p \cap E上 \Rightarrow O(t, 10-{5\over 2}t,5-2t), t\in \mathbb R \\\Rightarrow 球半徑R= \overline{OA} =\sqrt{ (t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2}\\ 令f(t)=(t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2 \Rightarrow f'(t)=0 \Rightarrow t=2 \Rightarrow \cases{R=\sqrt{14} \\O(2,5,1)} \\ \Rightarrow 球方程式: \bbox[red, 2pt]{(x-2)^2+ (y-5)^2+ (z-1)^2=14}
解答:
解答:{x^2\over 9}+{y^2\over 25}=1 \Rightarrow \cases{a=5\\ b=3} \Rightarrow c=4 \\ \Rightarrow 繞長軸(y軸) 旋轉體積= 2\pi \int_0^4 \left( \sqrt{9(1-{y^2\over 25})}\right)^2 \,dy = 2\pi \left. \left[ 9y-{3y^4\over 25} \right] \right|_0^4 = \bbox[red, 2pt]{{1416\over 25} \pi}
解答:\cases{A(-1,3,2) \\B(3,3,4)} \Rightarrow \cases{\overrightarrow{AB} =(4,0,2) \\ P=\overline{AB}中點=(1,3,3)} \Rightarrow 過P且法向量為\overrightarrow{AB}的平面E_p:2x+z=5 \\ \Rightarrow 球心O在直線L=E_p \cap E上 \Rightarrow O(t, 10-{5\over 2}t,5-2t), t\in \mathbb R \\\Rightarrow 球半徑R= \overline{OA} =\sqrt{ (t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2}\\ 令f(t)=(t+1)^2+(7-{5\over 2}t)^2+ (3-2t)^2 \Rightarrow f'(t)=0 \Rightarrow t=2 \Rightarrow \cases{R=\sqrt{14} \\O(2,5,1)} \\ \Rightarrow 球方程式: \bbox[red, 2pt]{(x-2)^2+ (y-5)^2+ (z-1)^2=14}
二、非選題(52 分)
解答:柯西不等式:xy= ((x-z)+z) (z+(y-z)) \ge \left(\sqrt{z(x-z)} +\sqrt{z(y-z)} \right)^2 \\ \Rightarrow \sqrt{xy}\ge \sqrt{z(x-z)} +\sqrt{z(y-z)}, \bbox[red, 2pt]{故得證}解答:
直線L:\cases{\sqrt 3x-z-6=0\\ y=0} \Rightarrow \cases{A=L\cap xy平面=(2\sqrt 3, 0,0) \\ B=L\cap z軸= (0,0,-6)}\\ 假設\cases{球心P(0,0,-r), r為球半徑\\ Q為球與L的切點} \Rightarrow \triangle ABO \sim \triangle PBQ (AAA) \Rightarrow {\overline{OA} \over \overline{AB}} ={\overline{PQ} \over \overline{ PB}} \\ \Rightarrow {2\sqrt 3\over 4\sqrt 3} ={r\over 6-r} \Rightarrow r=2 \Rightarrow P\bbox[red, 2pt]{(0,0,-2)}
解答:\bbox[red, 2pt]{n=7}, 參考資料:\href{https://www.sec.ntnu.edu.tw/uploads/asset/data/625640e3381784d09345bce2/09-97050.pdf}{中學生通訊解題第五十九期}
解答:略
==================== END =============================
解答:\bbox[red, 2pt]{n=7}, 參考資料:\href{https://www.sec.ntnu.edu.tw/uploads/asset/data/625640e3381784d09345bce2/09-97050.pdf}{中學生通訊解題第五十九期}
解答:略
==================== END =============================
沒有留言:
張貼留言