國立臺北科技大學108學年度碩士班招生考試
系所組別:2131 電機工程系碩士班丙組
第一節 工程數學 試題(選考)
解答:{P(x,y)=4xy2−2Q(x,y)=y3⇒{Px=4y2Qy=3y2⇒Px≠Qy⇒NonExact⇒u′=−Qy−PxQu=1yu⇒(1yu)′=0⇒1yu=c1⇒積分因子u=y⇒{uP=4xy3−2yuQ=y4⇒(uP)x=4y3=(uQ)y⇒Exact⇒Φ(x,y)=∫(4xy3−2y)dy=∫y4dx⇒xy4−y2+ρ(x)=xy4+ϕ(y)⇒Φ(x,y)=xy4−y2+c1=0解答:y″+4y′+4y=0⇒λ2+4λ+4=0⇒(λ+2)2=0⇒λ=−2⇒yh=e−2x(c1+c2x)Let {y1=e−2xy2=xe−2x, then{y′1=−2e−2xy′2=e−2x−2xe−2x⇒W=|y1y2y′1y′2|=|e−2xxe−2x−2e−2xe−2x−2xe−2x|=e−4xBy variations of parameters, yp=−e−2x∫xe−2x⋅e−2xlnxe−4xdx+xe−2x∫e−2x⋅e−2xlnxe−4xdx⇒yp=−e−2x∫xlnxdx+xe−2x∫lnxdx=−e−2x(12x2lnx−14x2)+xe−2x(xlnx−x)⇒yp=12x2e−2xlnx−34x2e−2x⇒y=yh+yp⇒y=e−2x(c1+c2x)+12x2e−2xlnx−34x2e−2x
解答:[dx1(t)dxdx2(t)dx]=[σω−ωσ][x1(t)x2(t)]⇒{x′1(t)=σx1(t)+ωx2(t)x′2(t)=−ωx1(t)+σx2(t)⇒{L{x′1(t)}=L{σx1(t)+ωx2(t)}L{x′2(t)}=L{−ωx1(t)+σx2(t)}⇒{sX1(s)−X1(0)=σX1(s)+ωX2(s)sX2(s)−X2(0)=−ωX1(s)+σX2(s)⇒{(s−σ)X1(s)=ωX2(s)+A(s−σ)X2(s)=−ωX1(s)+B⇒X1(s)=Bω−s−σωX2(s)=Bω−s−σω(s−σωX1(s)−Aω)⇒(1+(s−σ)2ω2)X1(s)=Bω+A(s−σ)ω2⇒X1(s)=1ω2+(s−σ)2(Bω+A(s−σ))⇒x1(t)=L−1{X1(s)}=Beσtsin(ωt)+Aeσtcos(ωt)⇒x′1(t)=(Aσ+Bω)eσtcos(ωt)+(Bσ−Aω)eσtsin(ωt)⇒x2(t)=1ω(x′1(t)−σx1(t))=Beσtcos(ωt)−Aeσtsin(ωt)⇒{x1(t)=eσt(Acos(ωt)+Bsin(ωt))x2(t)=eσt(Bcos(ωt)−Asin(ωt))
解答:(a) Let A=[000000000], then −AT=A. That is, A is a 3x3 skew-symmetrix matrix.Suppose A∈S, then A=−AT⇒cA=−(cA)T⇒cA∈S.Suppose A,B∈S, then A=−AT and B=−BT⇒A+B=−AT−BT=−(A+B)T⇒A+B∈S.Therefore, V is a subspace of V.QED.(b) A∈S⇒A=[0a1,2a1,3−a1,20a2,3−a1,3−a2,30]=a1,2[010−100000]+a1,3[001000−100]+a2,3[0000010−10], then {[010−100000],[001000−100],[0000010−10]} is a basis
解答:(a) A=[2−4404−10−14]⇒det
解答:\cases{4x_1-2x_2+ 3x_3=0\\ 3x_1-4x_2+ 2x_3=0 \\ 6x_1+2 x_2+5x_3 =0} \Rightarrow \begin{bmatrix} 4& -2& 3\\ 3& -4 & 2\\ 6& 2 & 5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=0 \\ \text{Let }A= \begin{bmatrix} 4& -2& 3\\ 3& -4 & 2\\ 6& 2 & 5 \end{bmatrix}, \text{ then }rref(A)= \begin{bmatrix} 1 & 0 & \frac{4}{5}\\0 & 1 & \frac{1}{10}\\0 & 0 & 0 \end{bmatrix} \Rightarrow \cases{x_1+ {4\over 5}x_3 =0\\ x_2+{1\over 10}x_3=0} \\ \Rightarrow \text{solutions of }A\mathbf x=0: \{k(-{4\over 5},-{1\over 10},1) \mid k\in \mathbb R\} \\ \Rightarrow \cases{\text{ a basis: }\bbox[red, 2pt]{\{(8,1,-10)\}} \\ \text{nullity}(A)=\bbox[red, 2pt]1}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言