Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2025年1月11日 星期六

108年北科大電機碩士班丙組-工程數學詳解

 國立臺北科技大學108學年度碩士班招生考試

系所組別:2131 電機工程系碩士班丙組
第一節 工程數學 試題(選考)

解答:{P(x,y)=4xy22Q(x,y)=y3{Px=4y2Qy=3y2PxQyNonExactu=QyPxQu=1yu(1yu)=01yu=c1u=y{uP=4xy32yuQ=y4(uP)x=4y3=(uQ)yExactΦ(x,y)=(4xy32y)dy=y4dxxy4y2+ρ(x)=xy4+ϕ(y)Φ(x,y)=xy4y2+c1=0
解答:y+4y+4y=0λ2+4λ+4=0(λ+2)2=0λ=2yh=e2x(c1+c2x)Let {y1=e2xy2=xe2x, then{y1=2e2xy2=e2x2xe2xW=|y1y2y1y2|=|e2xxe2x2e2xe2x2xe2x|=e4xBy variations of parameters, yp=e2xxe2xe2xlnxe4xdx+xe2xe2xe2xlnxe4xdxyp=e2xxlnxdx+xe2xlnxdx=e2x(12x2lnx14x2)+xe2x(xlnxx)yp=12x2e2xlnx34x2e2xy=yh+ypy=e2x(c1+c2x)+12x2e2xlnx34x2e2x
解答:[dx1(t)dxdx2(t)dx]=[σωωσ][x1(t)x2(t)]{x1(t)=σx1(t)+ωx2(t)x2(t)=ωx1(t)+σx2(t){L{x1(t)}=L{σx1(t)+ωx2(t)}L{x2(t)}=L{ωx1(t)+σx2(t)}{sX1(s)X1(0)=σX1(s)+ωX2(s)sX2(s)X2(0)=ωX1(s)+σX2(s){(sσ)X1(s)=ωX2(s)+A(sσ)X2(s)=ωX1(s)+BX1(s)=BωsσωX2(s)=Bωsσω(sσωX1(s)Aω)(1+(sσ)2ω2)X1(s)=Bω+A(sσ)ω2X1(s)=1ω2+(sσ)2(Bω+A(sσ))x1(t)=L1{X1(s)}=Beσtsin(ωt)+Aeσtcos(ωt)x1(t)=(Aσ+Bω)eσtcos(ωt)+(BσAω)eσtsin(ωt)x2(t)=1ω(x1(t)σx1(t))=Beσtcos(ωt)Aeσtsin(ωt){x1(t)=eσt(Acos(ωt)+Bsin(ωt))x2(t)=eσt(Bcos(ωt)Asin(ωt))
解答:(a) Let A=[000000000], then AT=A. That is, A is a 3x3 skew-symmetrix matrix.Suppose AS, then A=ATcA=(cA)TcAS.Suppose A,BS, then A=AT and B=BTA+B=ATBT=(A+B)TA+BS.Therefore, V is a subspace of V.QED.(b) ASA=[0a1,2a1,3a1,20a2,3a1,3a2,30]=a1,2[010100000]+a1,3[001000100]+a2,3[000001010], then {[010100000],[001000100],[000001010]} is a basis 
解答:(a) A=[244041014]det
解答:\cases{4x_1-2x_2+ 3x_3=0\\ 3x_1-4x_2+ 2x_3=0 \\ 6x_1+2 x_2+5x_3 =0} \Rightarrow \begin{bmatrix} 4& -2& 3\\ 3& -4 & 2\\ 6& 2 & 5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=0 \\ \text{Let }A= \begin{bmatrix} 4& -2& 3\\ 3& -4 & 2\\ 6& 2 & 5 \end{bmatrix}, \text{ then }rref(A)= \begin{bmatrix} 1 & 0 & \frac{4}{5}\\0 & 1 & \frac{1}{10}\\0 & 0 & 0 \end{bmatrix} \Rightarrow \cases{x_1+ {4\over 5}x_3 =0\\ x_2+{1\over 10}x_3=0} \\ \Rightarrow \text{solutions of }A\mathbf x=0: \{k(-{4\over 5},-{1\over 10},1) \mid k\in \mathbb R\} \\ \Rightarrow \cases{\text{ a basis: }\bbox[red, 2pt]{\{(8,1,-10)\}} \\ \text{nullity}(A)=\bbox[red, 2pt]1}

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言