國立臺北科技大學109學年度碩士班招生考試
系所組別:2131 電機工程系碩士班丙組
第一節 工程數學 試題(選考)
解答:(a) y=a−x⇒dydx=−1=(x+y)(x+y−2)=a(a−2)⇒a2−2a+1=0⇒a=1(b) dydx=(x+y)(x+y−2)⇒Riccati's equation⇒y=S(x)+1v=1−x+1v⇒y′=−1−v′v2=(x+y)(x+y−2)=(1+1v)(1v−1)⇒−1−v′v2=1v2−1⇒v′=−1⇒v=−x+c1⇒y=1−x+1c1−x解答:x2y″−2xy′+2y=0⇒Let y=xm, then y′=mxm−1,y″=m(m−1)xm−2⇒m(m−1)xm−2mxm+2xm=(m2−3m+2)xm=0⇒m2−3m+2=0⇒m=1,2⇒yh=c1x+c2x2Suppose that {y1=xy2=x2⇒{y′1=1y′2=2x⇒W(x,y)=|y1y2y′1y′2|=|xx212x|=x2Using variations of parameters, yp=−x∫x2⋅1x2cos1xx2dx+x2∫x⋅1x2cos(1x)x2dx⇒yp=−x∫cos1xx2dx+x2∫cos1xx3dx=−x(−sin1x)+x2(−sin1x+xcos1xx)⇒yp=−x2cos1x⇒y=yh+yp⇒y=c1x+c2x2−x2cos1x
解答:{2x1+2x2+x′2=δ(t−3)x′1−x2=0⇒{L{2x1+2x2+x′2}=L{δ(t−3)}L{x′1−x2}=0⇒{2X1(s)+2X2(s)+sX2(s)=e−3ssX1(s)−X2(s)=0⇒2X1(s)+2sX1(s)+s2X1(s)=e−3s⇒X1(s)=1s2+2s+2e−3s⇒x1(t)=L−1{X1(s)}=L−1{1s2+2s+2e−3s}=L−1{1(s+1)2+1e−3s}⇒x1(t)=H(t−3)e−t+3sin(t−3)X2(s)=sX1(s)=ss2+2s+2e−3s⇒x2(t)=L−1{X2(s)}=L−1{ss2+2s+2e−3s}⇒x2(t)=H(t−3)e−t+3(cos(t−3)−sin(t−3))
解答:A=[110−110001]⇒det(A−λI)=−(λ−1)(λ2−2λ+2)=0⇒λ=1,1±iλ1=1⇒(A−λ1I)v=0⇒[010−100000][x1x2x3]=0⇒x1=x2=0⇒v=x3(001), choose v1=(001)λ2=1−i⇒(A−λ2I)v=0⇒[i10−1i000i][x1x2x3]=0⇒{x1=ix2x3=0⇒v=x2(i10), choose v2=(i10)λ3=1+i⇒(A−λ3I)v=0⇒[−i10−1−i000−i][x1x2x3]=0⇒{x1+ix2=0x3=0⇒v=x2(−i10), choose v3=(−i10)⇒eigenvectors: v1,v2,v3=(001),(i10),(−i10)
解答:(a) Let {f1=e−2xf2=e2x and {g1,g2} denote the orthogonal basis. We apply the Gram-Schmidt process.g1=f1=e−2x⇒{f2⋅g1=∫101dx=1||g1||2=g1⋅g1=∫10e−4xdx=14(1−e−4)⇒g2=f2−f2⋅g1||g1||2g1=e2x−41−e−4e−2x⇒{g1,g2}={e−2x,e2x−41−e−4e−2x}(b) f(x)=x⇒{f⋅g1=∫10xe−2xdx=14(1−3e−2)f⋅g2=∫10(xe2x−4x1−e−4e−2x)dx=14(1+e2−4e2(e2−3)e4−1)g1⋅g1=∫10e−4xdx=14(1−e−4)g2⋅g2=∫10(e2x−41−e−4e−2x)2dx=1−18e4+e84(e4−1)⇒f(x)≈f⋅g1g1⋅g1g1+f⋅g2g2⋅g2g2=1−3e−21−e−4g1+1+e2−4e2(e2−3)e4−1e4−1g2⇒f(x)≈1−3e−21−e−4g1+e6−3e4+11e2−1(e4−1)2g2
解答:(a) v=[v1v2v3]⇒Av=[cos(α)−sin(α)0sin(α)cos(α)0001][v1v2v3]=[v1cos(α)−v2sin(α)v1sin(α)+v2cos(α)v3]=[u1u2u3]=u⇒[u1u2]=[cos(α)−sin(α)sin(α)cos(α)][v1v2]⇒u= rotating v about z axis through angle αQED(b) A=[cos(α)−sin(α)0sin(α)cos(α)0001]=[B001], where B=[cos(α)−sin(α)sin(α)cos(α)] is a rotation matrix⇒A20=[B20001]=[cos(20α)−sin(20α)0sin(20α)cos(20α)0001]
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言