國立暨南國際大學114學年度碩士班入學考試
科目:工程數學 適用:電機
解答:rref(A)=[10−1012000]⇒rank(A)=2,rref(B)=[10101−1000]⇒rank(B)=2AB=[−30−3−60−6−90−9]⇒rref(AB)=[101000000]⇒rank(AB)=1解答:(a) true:A is not invertible⇒det(A)=0⇒det(AB)=det(A)det(B)=0⇒AB is not invertible(b) false:det(A)=±(product of its pivots)(c) false:{A=[1001]B=[−100−1]⇒{A−B=[2002]det(A)=1det(B)=1⇒det(A−B)=4≠det(A)−det(B)=0(d) true:det(AB)=det(A)det(B)=det(B)det(A)=det(BA)
解答:(a) true:Suppose A is invertible and has an eigenvalue of 0, then Av=λv=0v=0⇒v=A−10=0, but v is an eigenvector (not a zero vector)⇒A has an eigenvalue of 0, then A is not invertible.(b) false:[1243]=[−11/211][−1005][−11/211]−1⇒A=[1243] and B=[−1005] are similar. but {eigenvectors of A=[−11],[1/21]eigenvectors of B=[10],[01]⇒ their eigenvectors are different(c) true:det(AT−λI)=det((A−λI)T)=det(A−λI)⇒AT and A have the same eigenvalues(d) false:A=[0010]⇒det(A−λI)=λ2=0⇒λ=0, but A≠0(e) false:{Av1=λ1v1Av2=λ2v2,λ1≠λ2 and suppose that v1+v2 is also an eigenvector of A⇒A(v1+v2)=λ3(v1+v2)⇒Av1+Av2=λ1v1+λ2v2=λ3v1+λ3v2⇒(λ1−λ3)v1=(λ3−λ2)v2⇒v1∥v2 contradiction
解答:(a) z=xy⇒z′=y+xy′⇒{y=z/xy′=z′/x−z/x2⇒xez(z′x−zx2)+ez⋅zx−3=0⇒ezz′−3=0(b) z′ez=3⇒∫ezdz=∫3dx⇒ez=3x+c1⇒z=xy=ln(3x+c1)⇒y=1xln(3x+c1)
解答:(a) y=x−4⇒y′=−4x−5⇒y″=20x−6⇒20x−6=−(9x(−4x−5)+Ax2x−4)=(36−A)x−6⇒20=36−A⇒A=16(b) y″=−(9xy′+16x2y)⇒x2y″+9xy′+16y=0y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒x2y″+9xy′+16y=(m2+8m+16)xm=0⇒m2+8m+16=(m+4)2=0⇒m=−4⇒y=c1x−4+c2x−4lnxx

解答:(a) y=∞∑n=0anxn⇒y′=∞∑n=0nanxn−1⇒y″=∞∑n=0n(n−1)anxn−2⇒y″+3xy′=∞∑n=0(3nanxn+n(n−1)anxn−2)=∞∑n=0(3nan+(n+2)(n+1)an+2)xny″+3xy′=y⇒∞∑n=0(3nan+(n+2)(n+1)an+2)xn=∞∑n=0anxn⇒3nan+(n+2)(n+1)an+2=an⇒(3n−1)an+(n+2)(n+1)an+2=0,n=0,1,…⇒an+2=−3n−1(n+2)(n+1)an⇒an+2=(4n+1−7n+2)an,n=0,1,…(b) an+2=(4n+1−7n+2)an,n=0,1,2,…⇒a2=12a0⇒a3=−13a1⇒a4=−512a2=−524a0⇒y=a0+a1x+12a0x2−13a1x3−524a0x4+⋯
====================== END ==========================解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言