Processing math: 100%

2025年4月7日 星期一

114年暨南大學電機碩士班-工程數學詳解

 國立暨南國際大學114學年度碩士班入學考試


科目:工程數學 適用:電機

解答:rref(A)=[101012000]rank(A)=2,rref(B)=[101011000]rank(B)=2AB=[303606909]rref(AB)=[101000000]rank(AB)=1
解答:(a) true:A is not invertibledet(A)=0det(AB)=det(A)det(B)=0AB is not invertible(b) false:det(A)=±(product of its pivots)(c) false:{A=[1001]B=[1001]{AB=[2002]det(A)=1det(B)=1det(AB)=4det(A)det(B)=0(d) true:det(AB)=det(A)det(B)=det(B)det(A)=det(BA)
解答:(a) true:Suppose A is invertible and has an eigenvalue of 0, then Av=λv=0v=0v=A10=0, but v is an eigenvector (not a zero vector)A has an eigenvalue of 0, then A is not invertible.(b) false:[1243]=[11/211][1005][11/211]1A=[1243] and B=[1005] are similar. but {eigenvectors of A=[11],[1/21]eigenvectors of B=[10],[01] their eigenvectors are different(c) true:det(ATλI)=det((AλI)T)=det(AλI)AT and A have the same eigenvalues(d) false:A=[0010]det(AλI)=λ2=0λ=0, but A0(e) false:{Av1=λ1v1Av2=λ2v2,λ1λ2 and suppose that v1+v2 is also an eigenvector of AA(v1+v2)=λ3(v1+v2)Av1+Av2=λ1v1+λ2v2=λ3v1+λ3v2(λ1λ3)v1=(λ3λ2)v2v1v2 contradiction
解答:(a) z=xyz=y+xy{y=z/xy=z/xz/x2xez(zxzx2)+ezzx3=0ezz3=0(b) zez=3ezdz=3dxez=3x+c1z=xy=ln(3x+c1)y=1xln(3x+c1)


解答:(a) y=x4y=4x5y=20x620x6=(9x(4x5)+Ax2x4)=(36A)x620=36AA=16(b) y=(9xy+16x2y)x2y+9xy+16y=0y=xmy=mxm1y=m(m1)xm2x2y+9xy+16y=(m2+8m+16)xm=0m2+8m+16=(m+4)2=0m=4y=c1x4+c2x4lnxx

解答:(a) y=n=0anxny=n=0nanxn1y=n=0n(n1)anxn2y+3xy=n=0(3nanxn+n(n1)anxn2)=n=0(3nan+(n+2)(n+1)an+2)xny+3xy=yn=0(3nan+(n+2)(n+1)an+2)xn=n=0anxn3nan+(n+2)(n+1)an+2=an(3n1)an+(n+2)(n+1)an+2=0,n=0,1,an+2=3n1(n+2)(n+1)anan+2=(4n+17n+2)an,n=0,1,(b) an+2=(4n+17n+2)an,n=0,1,2,a2=12a0a3=13a1a4=512a2=524a0y=a0+a1x+12a0x213a1x3524a0x4+

====================== END ==========================
解題僅供參考,其他碩士班試題及詳解

沒有留言:

張貼留言