國立成功大學114學年度碩士班招生考試試題
系 所:環境醫學研究所
科目:微積分
解答:(a) L=(1+sin(2x))1/3x=eln(1+sin(2x))/3x⇒lnL=ln(1+sin(2x))3x⇒limx→0lnL=limx→0ln(1+sin(2x))3x=limx→02cos(2x)/(1+sin(2x))3=23⇒limx→0L=e2/3(b) limx→0tan−1(ax)tan−1(bx)=limx→0a/(1+a2x2)b/(1+b2x2)=ab(c) ln(1+x)=x−x22+x33+⋯⇒limx→0+√x−ln(1+x)x=limx→0+√x2/2−x3/3+⋯x⇒limx→0+√1/2−x/3+⋯=√12=√22(d) limx→0+∫x20et√tsin√tdt+xcosx−xx3=limx→0+ex2(2x2)sinx +cosx−xsinx−13x2=limx→0+ex2(4x3sinx+4xsinx+2x2cosx)−2sinx −xcosx6x=limx→0+ex2(8x4sinx+18x2sinx+8x3cosx+4sinx+8xcosx)−3cosx +xsinx6=−12解答:g(x)=∫tanx1√1+t3dt⇒g′(x)=sec2x√1+tan3x⇒g′(π/4)=2√2f(x)=eg(x)⇒f′(x)=g′(x)eg(x)⇒f′(π/4)=g′(π/4)eg(π/4)=2√2e0=2√2
解答:G(x)=∫x30f(u)(x−3√u)du=x∫x30f(u)du−∫x303√uf(u)du⇒G′(x)=∫x30f(u)du+3x3f(x3)−3x3f(x3)=∫x30f(u)du⇒G(x)=C+∫x0G′(u)du=C+∫x0(∫u30f(t)dt)duG(0)=∫00f(u)(x−3√u)du=0⇒C=0⇒G(x)=F(x).QED.
解答:Assume a and b are two distinct fixed points, then {f(a)=af(b)=b;By Mean Value Theorem, there exists c∈(a,b) such that f′(c)=f(b)−f(a)b−a=b−ab−a=1, contradicting the hypothesis. That is, f has at most one fixed point.QED.
解答:I=∫10∫1ytan(x2)dxdy=∫10∫x0tan(x2)dydx=∫10xtan(x2)dxu=x2⇒du=2xdx⇒I=∫1012tanudu=[−12lncosu]|10=−12lncos1
解答:{x=uvy=v−u⇒{∂x∂u=v∂x∂v=u∂y∂u=−1∂y∂v=1⇒∂z∂u=∂z∂x∂x∂u+∂z∂y∂y∂u=fxv+fy(−1)=fxv−fy⇒∂2z∂u∂v=∂∂v(fxv−fy)=∂∂v(fxv)−∂∂vfy=(fxxu+fxy)v+fx−fyxu−fyy=fxxuv+fxy(v−u)+fx−fyy=xfxx+yfxy+fx−fyy
解答:x2/3+y2/3+y=6⇒23x−1/3+23y−1/3y′+y′=0⇒y′=−23x−1/323y−1/3+1⇒y′(8,1)=−1/35/3=−15⇒ tangent line: y=−15(x−8)+1⇒x+5y=13
解答:(a) g(x)=∫x0f(u)du=−2+x2+xsin(2x)+ccos(2x)⇒g(0)=∫00f(u)du=0=−2+c⇒c=2(b) g′(x)=f(x)=2x+sin(2x)+2xcos(2x)−4sin(2x)⇒f′(x)=2+4cos(2x)−4xsin(2x)−8cos(2x)⇒f′(π/4)=2+0−π−0=2−π
解題僅供參考,其他碩士班試題及詳解
沒有留言:
張貼留言