2019年8月6日 星期二

108年高考三級-經建、工業、農業行政及交通技術-統計學詳解


108年公務人員高等考試三級考試
類 科 :經建行政、工業行政、農業行政、交通技術象
科 目:統計學


(一){uy=aux+bσy=|a|σx{68=56a+b10=14|a|(a,b)=(5/7,28)(5/7,108)(二)標準差越大代表離散程度越高,因此的離散程度較高。
(三){|445614|=67|546810|=65{6/76/5,,




(一)

(二)P(XaH0)=116a08xdx=1164a2=116a=18(三)=P(XaHa)=1/80(48x)dx=[4x4x2]|1/80=12116=716



(一)xyx2xyy2346115620436187324126493814144453219633710892314929884123264x6y6x26x6y6y26152+x628+y64854+x261073+x6yy394+y26xyx2xyy2(ˉx,ˉy)ˉy=22.609+0.937ˉxy6+286=22.609+0.937x6+1526y6+28=135.654+0.937x6+142.424y6=0.937x621.23nxyxynx2(x)2=6(1073+x6y6)(152+x6)(28+y6)6(4854+x26)(152+x6)2=2182+5x6y6152y628x66020+5x26304x6=0.9374.685x265x6y6256.848x6+152y6+3458.74=04.685x265x6(0.937x621.23)256.848x6+152(0.937x621.23)+3458.74=08.274x6=231.78x6=28.01328y6=5.0185{x6=28y6=5(二)ˆy=22.609+0.937xb0+b1xα=0.01H0:β1=0,β1H1:β10t:ixiyix2i^yiyi^yi(yi^yi)2134611569.2493.24910.55621873245.7431.2571.58033814144412.9971.0031.006433710898.3121.3121.72152988414.5643.43611.80662857843.6271.3731.88518033563833.0060.00628.555xyx2ˆyyˆy(yˆy)2S=SSEn2=28.55562=2.672Sb1=Sx2(x)2n=2.67256381802/6=0.173t=b1Sb1=0.9370.173=5.41tα/2,n2=t0.005,44.604t>tα/2,n2H0




(一)ixi()yi()x2iy2ixiyi1823645291842121214414414439248157621641111121121121562636676156673049900210710241005762408815642251209624365761441013121691441569020186444671691xyx2y2xyr=nxyxynx2(x)2ny2(y)2=10×169190×20110×864902×10×44672012=1180540×4269=11801518.3=0.777r=0.777t=rn21r2=0.777810.7772=3.493tα/2,n2=t0.025,82.306|t|>2.306,,(二)ixi()yi()xiyidid2i18234.550.50.252121292.56.542.2539246711411118174956261.597.556.25673031074971024770088154.540.50.2596241.575.530.25101312102.57.556.2555550284.5did2irs=16din(n21)=16×284.510×99=0.724t=rsn21r2s=0.724810.7242=2.971tα/2,n2=t0.025,82.306|t|>2.306,,(三)

斯皮爾曼係數利用序位計算相關係數,可以避開極端值。由上圖就可看出斯皮爾曼散佈圖相較於皮爾森更集中。另一方面,若兩變數非趨向於一直線,斯皮爾曼係數就更適合作為檢定的數值。

考選部未公布答案,解題僅供參考

沒有留言:

張貼留言