(一)$$\begin{cases} u_y=au_x+b \\ \sigma_y=|a|\sigma_x\end{cases} \Rightarrow \begin{cases} 68=56a+b \\ 10=14|a| \end{cases} \Rightarrow (a,b)=\bbox[red,2pt]{(5/7,28)或(-5/7,108)}$$(二)標準差越大代表離散程度越高,因此\(\bbox[red,2pt]{微積分}\)的離散程度較高。
(三)$$\begin{cases} \left|{44-56\over 14}\right|={6\over 7} \\ \left|{54-68\over 10}\right|={6\over 5}\end{cases} \Rightarrow \begin{cases} 微積分與平均值相差6/7個標準差 \\ 管理學與平均值相差6/5個標準差 \end{cases} \\ \Rightarrow 兩科得分均低於平均數,但微積分較接近平均數,所以\bbox[red,2pt]{微積分}考得比較好$$
解:
(二)$$P(X\le a\mid H_0)={1\over 16} \Rightarrow \int_0^a {8x\,dx}={1\over 16} \Rightarrow 4a^2= {1\over 16} \Rightarrow \bbox[red,2pt]{ a={1\over 8}}$$(三)$$統計檢定力=P(X\le a\mid H_a) = \int_0^{1/8} {(4-8x)\,dx}= \left. \left[ 4x-4x^2 \right]\right|_0^{1/8}={1\over 2}-{1\over 16}= \bbox[red,2pt] {7\over 16}$$
解:
(一)$$\begin{array}{rrrrr}x&y&x^2&xy&y^2\\\hline 34&6&1156&204&36\\18&-7&324&-126& 49& \\ 38&14& 1444& 532& 196\\33 &7 &1089 & 231&49 \\ 29&8 & 841 &232 &64 \\x_6&y_6& x_6^2& x_6y_6& y_6^2 \\\hline 152+x_6 &28+y_6 &4854+x_6^2 &1073+x_6y_y &394+y_6^2\\\sum{x}&\sum{y} &\sum{x^2}&\sum{xy}&\sum{y^2}\end{array}\\ 由於迴歸直線經過(\bar{x},\bar{y}) \Rightarrow \bar{y}=-22.609+0.937\bar{x} \Rightarrow {y_6+28 \over 6}=-22.609+0.937\cdot{x_6+152\over 6}\\\Rightarrow y_6+28=-135.654+0.937x_6+142.424 \Rightarrow y_6=0.937x_6-21.23\\ 又該直線斜率為{n\sum{xy}-\sum{x} \sum{y} \over n\sum{x^2}-(\sum{x})^2}={6 \cdot (1073+x_6y_6) -(152+x_6)(28+y_6)\over 6\cdot (4854+x_6^2)-(152+x_6)^2}\\={2182+5x_6y_6-152y_6-28x_6\over 6020+5x_6^2-304x_6}=0.937\\ \Rightarrow 4.685x_6^2-5x_6y_6-256.848x_6+152y_6+3458.74=0 \\ \Rightarrow 4.685x_6^2-5x_6(0.937x_6-21.23)-256.848x_6+152(0.937x_6-21.23)+3458.74=0 \\ \Rightarrow 8.274x_6=231.78 \Rightarrow x_6=28.013\approx 28\Rightarrow y_6=5.018\approx 5 \\ \Rightarrow \bbox[red,2pt]{\begin{cases} x_6=28\\y_6=5\end{cases}}$$(二)$$\hat{y}=-22.609+0.937x \equiv b_0+b_1x\\顯著水準\, \alpha=0.01\\H_0:\beta_1=0,其中\beta_1為線性迴歸方程式的斜率\\H_1:\beta_1\ne 0\\ 計算t值:\\\begin{array}{r|rr|rr}i&x_i&y_i&x_i^2 &\hat{y_i}&y_i-\hat{y_i}&(y_i-\hat{y_i})^2\\\hline 1&34&6&1156 &9.249& -3.249& 10.556\\2 &18&-7&324 &-5.743 &-1.257& 1.580 \\ 3&38&14& 1444& 12.997& 1.003& 1.006\\4&33 &7 &1089&8.312 & -1.312&1.721 \\ 5&29&8 & 841 &4.564 &3.436 &11.806 \\6& 28&5& 784 & 3.627& 1.373 &1.885 \\\hline &180 &33 &5638 &33.006 &-0.006 &28.555\\&\sum{x}&\sum{y} &\sum{x^2}&\sum{\hat{y}}&\sum{y-\hat{y}} & \sum{(y-\hat{y})^2}\end{array}\\ S=\sqrt{SSE\over n-2} = \sqrt{28.555\over 6-2}=2.672 \Rightarrow S_{b_1}={S\over \sqrt{\sum{x^2}-{(\sum{x})^2\over n}}} = {2.672\over \sqrt{ 5638 - {180^2/ 6}}}=0.173 \\ \Rightarrow t={b_1\over S_{b_1}}={0.937 \over 0.173}=5.41\\由於t_{\alpha/2,n-2} = t_{0.005,4}\to查表可得4.604 \Rightarrow t>t_{\alpha/2,n-2} \Rightarrow 拒絕H_0\\ \Rightarrow 此迴歸模型具\bbox[red,2pt]{有}配適能力$$
解:
(一)$$\begin{array}{r|rr|rrr}
i & x_i(車齡) & y_i(賣價) &x_i^2 &y_i^2 &x_iy_i\\\hline
1 & 8 & 23 & 64 & 529 & 184\\
2 & 12& 12 & 144& 144 & 144\\
3 & 9 & 24 & 81 &576 & 216\\
4 & 11& 11 & 121&121 & 121\\
5 & 6 & 26 & 36 &676 & 156\\
6 & 7 & 30 & 49 &900 & 210\\
7 & 10& 24 & 100&576 &240\\
8 & 8 & 15 & 64 &225 & 120\\
9 & 6 & 24 & 36 & 576& 144\\
10& 13&12 &169& 144 & 156\\\hline
& 90&201 &864&4467&1691\\
&\sum{x} &\sum{y} &\sum{x^2}&\sum{y^2}&\sum{xy}
\end{array}\\
皮爾森相關係數\,r={n\sum{xy}-\sum{x}\sum{y} \over \sqrt{n\sum{x^2}-(\sum{x})^2}\sqrt{ n\sum{y^2}-(\sum{y})^2}} ={10\times 1691 - 90\times 201 \over \sqrt{10\times 864-90^2}\times \sqrt{10\times 4467-201^2}}\\
={-1180\over \sqrt{540}\times \sqrt{4269}}={-1180 \over 1518.3}= -0.777 \Rightarrow \bbox[red,2pt]{r=-0.777}\\
t=r\sqrt{n-2\over 1-r^2}=-0.777\sqrt{8\over 1-0.777^2} =-3.493\\
t_{\alpha/2,n-2}=t_{0.025,8}查表可得2.306\\ 由於|t|>2.306,因此\bbox[red,2pt]{達顯著水準},也就是說賣價與車齡之間有顯著關係$$(二)$$\begin{array}{r|rr|rrr}
i & x_i(車齡) & y_i(賣價) &x_i排序 &y_i排序 &d_i &d_i^2\\\hline
1 & 8 & 23 & 4.5 & 5 & -0.5 &0.25\\
2 & 12& 12 & 9 & 2.5 & 6.5 &42.25\\
3 & 9 & 24 & 6 & 7 & -1 &1\\
4 & 11& 11 & 8 & 1 & 7 &49\\
5 & 6 & 26 & 1.5 & 9 & -7.5& 56.25\\
6 & 7 & 30 & 3 & 10 & -7&49\\
7 & 10& 24 & 7 & 7 & 0 &0\\
8 & 8 & 15 & 4.5 &4 & 0.5 &0.25\\
9 & 6 & 24 & 1.5 & 7 & -5.5 &30.25\\
10& 13&12 &10& 2.5 & 7.5 &56.25\\\hline
& & &55 &55 &0 &284.5\\
& & & & &\sum{d_i}&\sum{d_i^2}
\end{array}\\
斯皮爾曼相關係數r_s=1-{6\sum{d_i}\over n(n^2-1)}=1-{6\times 284.5\over 10\times 99}= -0.724\\
t=r_s\sqrt{n-2\over 1-r_s^2}=-0.724\sqrt{8\over 1-0.724^2} =-2.971\\
t_{\alpha/2,n-2}=t_{0.025,8}查表可得2.306\\ 由於|t|>2.306,因此\bbox[red,2pt]{達顯著水準},$$(三)
斯皮爾曼係數利用序位計算相關係數,可以避開極端值。由上圖就可看出斯皮爾曼散佈圖相較於皮爾森更集中。另一方面,若兩變數非趨向於一直線,斯皮爾曼係數就更適合作為檢定的數值。
考選部未公布答案,解題僅供參考
沒有留言:
張貼留言