108年國家安全局國家安全情報人員考試試題
考試別:國家安全情報人員
等別:三等考試
類 科組 :電子組
科 目:工程數學
等別:三等考試
類 科組 :電子組
科 目:工程數學
解:將D′Alembert的解代入本題,可得:y(x,t)=12(f(x−t)+f(x+t))+12∫x+tx−tg(z)dz其中{f(x)=y(x,0)=0g(x)=∂y∂t(x,0)⇒y(x,t)=12∫x+tx−tg(z)dz現在我們要求g(x)的解令y(x,t)=X(x)T(t)⇒{∂2y∂t2=XT″∂2y∂x2=X″T,因此∂2y∂t2=∂2y∂x2⇒XT″=X″T⇒X″X=T″T由於此為波動方程式,可令X″X=T″T=−ω2⇒{X″+ω2X=0T″+ω2T=0⇒{X(x)=Acosωx+BsinωxT(t)=Ccosωt+Dsinωt⇒g(x)=∂y∂t(x,0)=X(x)T′(0)=(Acosωx+Bsinωx)(−ωCsin0+ωDcos0)=ωD(Acosωx+Bsinωx)=ω(A′cosωx+B′sinωx)⇒y(x,t)=12∫x+tx−tω[A′cosωz+B′sinωz]dz=12[A′sinωz−B′cosωz]|x+tx−t=12[(A′sinω(x+t)−B′cosω(x+t))−(A′sinω(x−t)−B′cosω(x−t))]=12[A′(sinω(x+t)−sinω(x−t))−B′(cosω(x+t)−B′cosω(x−t))]=12[A′(2cosωxsinωt)−B′(−2sinωxsinωt)]=(A′cosωx+B′sinωx)sinωt⇒y(x,t)=(A′cosωx+B′sinωx)sinωt=∞∑n=1(Ancosωnx+Bnsinωnx)sinωnt -- 待續 - -
解:A=[−24263−328−5]⇒det(A)=30+96−24−12+120−48=162⇒A−1=1det(A)[|3−38−5|−|428−5||423−3|−|6−32−5||−222−5|−|−226−3||6328|−|−2428||−2463|]=1162[936−1824664224−30]=[1/182/9−1/94/271/271/277/274/27−5/27]
解:u⊥(v×u)⇒u⋅(v×u)=0,故選(A)
解:{(m,n,m−2n)∈W(p,q,p−2q)∈W⇒a(m,n,m−2n)+b(p,q,p−2q)=(am,an,am−2an)+(bp,bq,bp−2bq)=(am+bp,an+bq,am−2an+bp−2bq)=(am+bp,an+bq,am+bp−2(an+bq))∈W即u,v∈W⇒au+bv∈W⇒W是R3的子空間,故選(D)
解:[a1a2a3b1b2b3c1c2c3]−r2+r1→[a1−b1a2−b2a3−b3b1b2b3c1c2c3]3r2→[a1−b1a2−b2a3−b33b13b23b3c1c2c3]−r2+r3→[a1−b1a2−b2a3−b33b13b23b3c1−3b1c2−3b2c3−3b3]⇒det[a1a2a3b1b2b3c1c2c3]=3×det(C)=15,故選(A)
解:[101111−12201032−15]−r1+r2,−2r1+r3,−3r1+r4→[101101−2100−1−202−42]−2r2+r4→[101101−2100−1−20000]−2r3+r2,r3+r1→[100−1010500−1−20000]⇒Rank(A)=3⇒A之零空間維度為4−3=1,故選(B)
解:[8−5]=a[1−1]+b[2−1]⇒{a+2b=8−a−b=−5⇒{a=2b=3⇒L([85])=L(a[1−1])+L(b[2−1])=aL([1−1])+bL([2−1])=a[12−1]+b[012]=2[12−1]+3[012]=[24−2]+[036]=[274],故選(B)
解:det(A−λI)=0⇒|5−λ1302−λ−1203−13−λ|=0⇒λ=5,−1,−10A[xyz]=λ[xyz]⇒{λ=5λ=−1λ=−10⇒{[5x+y+3z2y−12z3y−13z]=[5x5y5z][5x+y+3z2y−12z3y−13z]=[−x−y−z][5x+y+3z2y−12z3y−13z]=[−10x−10y−10z]⇒{[xyz]=[x00][xyz]=[−7z/64zz][xyz]=[−4z/15zz]⇒取特徵向量為{[x00]=[100][−7z/64zz]=[7−24−6][−4z/15zz]=[4−15−15],故選(D)
解:lim
解:z^{ 3 }=i=0+i=\begin{cases} \cos { \frac { \pi }{ 2 } } +i\sin { \frac { \pi }{ 2 } } \\ \cos { \frac { 5\pi }{ 2 } } +i\sin { \frac { 5\pi }{ 2 } } \\ \cos { \frac { 9\pi }{ 2 } } +i\sin { \frac { 9\pi }{ 2 } } \end{cases}\Rightarrow z=\begin{cases} \cos { \frac { \pi }{ 6 } } +i\sin { \frac { \pi }{ 6 } } =\frac { \sqrt { 3 } }{ 2 } +\frac { 1 }{ 2 } i \\ \cos { \frac { 5\pi }{ 6 } } +i\sin { \frac { 5\pi }{ 6 } } =-\frac { \sqrt { 3 } }{ 2 } +\frac { 1 }{ 2 } i \\ \cos { \frac { 9\pi }{ 6 } } +i\sin { \frac { 9\pi }{ 6 } } =0-i=-i \end{cases}\\,故選\bbox[red,2pt]{(C)}
解:\int_{|z|=2}{\frac{f(z)}{z-1}dz}=2\pi i\times f(1)=2\pi i\times(1+2-5)=-4\pi i,故選\bbox[red,2pt]{(D)}
解:y'''+3y''-y''-y'-3y=0\Rightarrow \lambda^3+3\lambda^2-\lambda-3=0 \Rightarrow (\lambda-1)(\lambda+1)(\lambda+3)=0\\ \Rightarrow \lambda=-3,-1,1 \Rightarrow y=k_1e^{-3t}+k_2e^{-t}+k_3e^t,故選\bbox[red,2pt]{(A)}
解:\left| z-3+7i \right| =4\Rightarrow \left| z-(3-7i) \right| =4\Rightarrow z至(3-7i)的距離為4 \Rightarrow 其解為一圓,故選\bbox[red,2pt]{(C)}
解:先求y_h,即y''+0.5y'-0.5y=0 \Rightarrow \lambda^2+0.5\lambda-0.5=0 \Rightarrow (2\lambda-1)(\lambda+1)=0\\ \Rightarrow \lambda={1\over 2},-1 \Rightarrow y_h=C_1e^{x/2}+C_2e^{-x}\\ 令y_p=ae^x+b\sin{x}+c\cos{x} \Rightarrow y_p'=ae^x+b\cos{x}-c\sin{x} \Rightarrow y_p''=ae^x-b\sin{x}-c\cos{x}\\ 代回原式可得 ae^x+ \left( -{3\over 2}b-{1\over 2}c \right)\sin{x}+\left( -{3\over 2}c+{1\over 2}b \right)\cos{x}=e^x+\sin{x}+3\cos{x} \\ \Rightarrow \begin{cases} a=1\\ -{3\over 2}b -{1\over 2}c=1 \\ -{3\over 2}c+{1\over 2}b=3\end{cases} \Rightarrow \begin{cases} a=1\\ b=0 \\ c=-2\end{cases} \Rightarrow y=y_h+y_p= C_1e^{x/2}+C_2e^{-x}+e^x-2\cos{x}\\ \Rightarrow y'={1\over 2}C_1e^{x/2}-C_2e^{-x}+e^x+2\sin{x}\\ \begin{cases} y(0)=0\\ y'(0)=1.5 \end{cases} \Rightarrow \begin{cases} C_1+C_2+1-2=0\\ {1\over 2}C_1-C_2+1=1.5 \end{cases} \Rightarrow \begin{cases} C_1+C_2=1\\ C_1-2C_2=1 \end{cases} \Rightarrow \begin{cases} C_1=1\\ C_2=0 \end{cases}\\ \Rightarrow y=e^{x/2}+e^x-2\cos{x},故選\bbox[red,2pt]{(A)}
解: L\{f(t)\}=\int_0^\infty{e^{-st}f(t)\,dt}= \int_0^{2\pi}{e^{-st}\sin{t}\,dt} + \int_{2\pi}^\infty{e^{-st}(2+\cos{t})\,dt} \\=\int_0^{2\pi}{e^{-st}\sin{t}\,dt} + 2\int_{2\pi}^\infty{e^{-st}\,dt}+ \int_{2\pi}^\infty{e^{-st}\cos{t}\,dt}\\ =\left. \left[ e^{-st}\left(-{\cos{t}\over s^2+1} -{s\sin{t}\over s^2+1}\right) \right] \right|_0^{2\pi} +2 \left. \left[ -{1\over s}e^{-st}\right] \right|_{2\pi}^\infty +\left. \left[ e^{-st}\left({\sin{t}\over s^2+1} -{s\cos{t}\over s^2+1}\right) \right] \right|_{2\pi}^\infty\\ ={1\over s^2+1}\left(1-e^{-2\pi s} \right)+{2\over s}e^{-2\pi s}+e^{-2\pi s}\left( {s\over s^2+1}\right) ={1\over s^2+1} + e^{-2\pi s}\left( {2\over s}+{s-1\over s^2+1}\right),故選\bbox[red,2pt]{(C)}
解:\int_1^2{f(x)\,dx}=\int_1^2{(x-ix^2)\,dx}=\left. \left[\frac{1}{2}x^2-\frac{1}{3}ix^3 \right] \right|_1^2=(2-\frac{8}{3}i)-(\frac{1}{2}-\frac{1}{3}i)=\frac{3}{2}-\frac{7}{3}i\\,故選\bbox[red,2pt]{(A)}
解:只看常數項\\y=a-x^2-{x^4\over 3}-\cdots \Rightarrow y'=-2x-{4x^3\over 3}+\cdots \Rightarrow y''=-2-4x^2+\cdots\\ \Rightarrow x^2y''=-2x^2-4x^4+ \cdots \Rightarrow (1-x^2)y''=-2 -2x^2-2x^4 + \cdots \\ \Rightarrow -2xy'=4x^2+ \dots \Rightarrow (1-x^2)y''-2xy'+2y=(-2+2a)+0\cdot x^2+\cdots =0\\ \Rightarrow -2+2a=0 \Rightarrow a=1,故選\bbox[red,2pt]{(B)}
解:\int_0^t{f(\tau)d\tau} =\int_0^t{\sin(2\tau)d\tau} = {1\over 2}\left( 1-\cos{2t}\right)\\ \Rightarrow L\{\int_0^t{f(\tau)d\tau} \}= L\{{1\over 2}\left( 1-\cos{2t}\right)\}={1\over 2}\left( {1\over s}-{s\over s^2+4} \right) ={1\over 2}\left( {s^2+4-s^2\over s(s^2+4)} \right)\\ ={2\over s(s^2+4)},故選\bbox[red,2pt]{(D)}
解:f(x)=x^2={\pi^2\over 3}+4\sum_{n=1}^\infty{(-1)^n\over n^2}\cos{nx}\\ \Rightarrow \begin{cases} f(0)=0= {\pi^2\over 3}+4\left(-1+{1\over 2^2} -{1\over 3^2} +{1\over 4^2}-\cdots\right)\cdots(1)\\ f(\pi)=\pi^2={\pi^2\over 3}+4\left(1+{1\over 2^2} +{1\over 3^2} +{1\over 4^2}+\cdots\right)\cdots(2) \end{cases} \\ (2)-(1)\Rightarrow \pi^2=4\left(2+{2\over 3^2} +{2\over 5^2}+{2\over 7^2}\cdots\right)=8 \left(1+{1\over 3^2} +{1\over 5^2}+{1\over 7^2}\cdots\right)\\ \Rightarrow 1+{1\over 3^2} +{1\over 5^2}+{1\over 7^2}\cdots=\pi^2/8,故選\bbox[red,2pt]{(A)}
解:\begin{cases} E(X)=\int _{ 0 }^{ 1 }{ 2x^{ 2 }\, dx } =\frac { 2 }{ 3 } \\ E(X^{ 2 })=\int _{ 0 }^{ 1 }{ 2x^{ 3 }\, dx } =\frac { 1 }{ 2 } \end{cases}\Rightarrow Var(X)=E(X^{ 2 })-(E(X))^{ 2 }=\frac { 1 }{ 2 } -\frac { 4 }{ 9 } =\frac { 1 }{ 18 } ,故選\bbox[red,2pt]{(A)}
解:f(x)=2(1-x) \Rightarrow F(x)=\int{f(x)dx}=2x-x^2 \Rightarrow F(y)=2\sqrt{y}-(\sqrt{y})^2=2\sqrt{y}-y\\ \Rightarrow f(y)=F'(y)={1\over \sqrt{y}}-1,故選\bbox[red,2pt]{(A)}
解:E[XY]=\int\int{xyf(x,y)dxdy} =\int_0^1\int_0^1{x^2y(y+1.5)dxdy} =\int_0^1{\left. \left[ {1\over 3}x^3y(y+1.5) \right] \right|_0^1\,dy} \\ =\int_0^1{{1\over 3}y(y+1.5)\,dy} =\int_0^1{({1\over 3}y^2+{1\over 2}y)\,dy} = \left. \left[ {1\over 9}y^3+ {1\over 4}y^2 \right]\right|_0^1= {1\over 9}+{1\over 4}={13\over 36},故選\bbox[red,2pt]{(C)}
沒有留言:
張貼留言