臺中市立臺中第一高級中等學校110學年度第1次教師甄選
壹、填充題第一部分
解答:{2k⋅4m⋅8n=5124p⋅3q⋅6r=211⋅616⇒{2k+2m+3n=2922p+r⋅3q+r=227⋅316⇒{k+2m+3n=92p+r=27q+r=16⇒{(k,m,n)=(4,1,1),(2,2,1),(1,1,2)(p,q,r)=(14−k,17−2k,2k−1),k=1−8⇒{a=3b=8⇒(a,b)=(3,8)解答:A−1B=C⇒B=AC⇒[14−12]=[xyzu][4−26−318]=[4x−3y−26x+18y4z−3u−26z+18u]⇒{4x−3y=1−26x+18y=44z−3u=−1−26z+18u=2⇒(x,y,z,u)=(−5,−7,2,3)
解答:log4x−logx8+2=0⇒12log2x−3log2x+2=0⇒(log2x)2+4(log2x)−6=0⇒log2x=−2+√10(−2−√10不合,∵x>1⇒log2x>0)⇒2(log2x)3+9(log2x)2−7(log2x)−3=2(−2+√10)3+9(−2+√10)2−7(−2+√10)−3=2(−68+22√10)+9(14−4√10)−7(−2+√10)−3=1+√10
解答:
點O為¯BC的中點,並令O為坐標原點,則{B(−3,0,0)C(3,0,0)A(0,3√3,0),又¯CD=¯BD,D在平面x=0上,即D(0,y,z)四面體體積=13△ABC⋅z=18√3⇒13⋅9√3⋅z=18⇒z=6;此外,平面ABC與平面DBC夾角60∘⇒tan60∘=zy⇒y=√33z=2√3⇒D(0,2√3,6)⇒¯AD=√(√3)2+62=√39
解答:{P在x軸移動Q在y軸移動⇒{P(a,0)Q(0,b),又{¯PQ=10¯PR:¯RQ=3:2⇒{a2+b2=102R=25P+35Q⇒{b2=100−a2R(25a,35b)≡R(x,y)⇒259y2=100−254x2⇒x216+y236=1⇒R的軌跡為一橢圓⇒R(4cosθ,6sinθ)⇒令d=R至(2,0)的距離=√(4cosθ−2)2+36sin2θ=√20sin2θ−16cosθ+20=√−20cos2θ−16cosθ+40⇒{cosθ=−2/5⇒M=6√30/5cosθ=1⇒m=2⇒(M,m)=(6√305,2)
解答:{lim
解答:\cases{E(X)=1 \\ E(X^2)=3 \\ E(Y)=2 \\ E(Y^2)=5 \\ E(XY)=3} \Rightarrow \cases{Var(X)= E(X^2)-(E(X))^2 =3-1=2\\ Var(Y)= E(Y^2)-(E(Y))^2 =5-4=1 \\Cov(X,Y) = E(XY)-E(X)E(Y) =3-2=1} \\ \Rightarrow Var(3X-2Y+7) = 9Var(X)+4Var(Y)-12Cov(X,Y) =18+4-12= \bbox[red, 2pt]{10}
解答:假設f(x)=x^3+a_2x^2 +a_1x +a_0,且f(x)=0的三根為b,c,d;\\由於abcd=-5 \Rightarrow bcd=-5/a \Rightarrow a_0=5/a \Rightarrow f(x)=x^3+a_2x^2 +a_1x +{5\over a}\\ 再由f(x)=0的三根為b,c,d \Rightarrow \cases{f(x+1)=0的三根為b-1,c-1,d-1 \\f(x+2)=0的三根為b-2,c-2,d-2 \\f(x+3)=0的三根為b-3,c-3,d-3 } \\ \Rightarrow \cases{f(x+1)的常數項= 1+a_2+a_1+5/a= -(b-1)(c-1)(d-1)= -11/a \\f(x+2)的常數項= 8+4a_2 +2a_1+5/a= -(b-2)(c-2)(d-2) = -33/a\\ f(x+3)的常數項= 27+9a_2 +3a_1+5/a= -(b-3)(c-3)(d-3)= -73/a} \\ \Rightarrow \cases{a_1=17/2\\ a_2= -3/2 \\ a=-2} \Rightarrow f(x)=x^3-{3\over 2} x^2+{17\over 2}x- {5\over 2} \Rightarrow f(x-1)=0的三根為b+1,c+1,d+1\\ \Rightarrow (b+1)(c+1)(d+1)= (-1)\times f(x-1)的常數項 =(-1) \times (-1-{3\over 2}-{17\over 2}-{5\over 2}) ={27\over 2} \\ \Rightarrow a(b+1)(c+1)(d+1)= -2\times{27\over 2}= \bbox[red, 2pt]{-27}
解答:三次函數f(x)=ax^3+ bx^2 +cx +d 的對稱中心點為(-{b\over 3a},f(-{b\over 3a})),\\因此\cases{-{b\over 3a}=1 \Rightarrow b=-3a \cdots(1)\\ f(-{b\over 3a})=f(1)= a+b+c+d= 2 \cdots(2)} ;又f'(2)= -4 \Rightarrow 12a+4b+c = -4\cdots(3)\\ 將(1)代入(3)\Rightarrow c=-4代入(2) \Rightarrow a-3a-4+d=2 \Rightarrow d=2a+6 \\ \Rightarrow k=\lvert{b^2+c^2 +d^2 \over a} \rvert = \lvert{9a^2+16 +4a^2+24a+36 \over a} \rvert = \lvert{13a^2+ 24a+52 \over a} \rvert = \lvert 13a+ 24+{52 \over a} \rvert \\ 若a\gt 0,則 13a + {52\over a} \ge 2\sqrt{13a \cdot {52\over a}} = 2\cdot 26=52;若a \lt 0,則13a + {52\over a} \ge -52;\\ 因此k的最小值發生在 13a+ {52 \over a} =-52,此時k=|-52+24|=|-28|= \bbox[red, 2pt]{28}
解答: 甲乙皆在A箱抽中1號球的情形:甲抽中1號球的機率{2\over 6},乙隨後抽中1號球的機率{1\over 5}\\,因此機率為{2\over 6}\times {1\over 5}={1\over 15};甲乙皆在A箱抽中2號球或3號球的機率都是{1\over 15}\\,也就是甲乙在A箱抽中同號球的機率為{1\over 15}\times 3={1\over 5};\\ 甲乙兩人在三箱皆抽同號的機率就是({1\over 5})^3 ={1\over 125}\\,因此甲乙兩人取得不同的三位數機率為1-{1\over 125}={124\over 125},而一半是甲大,另一半是乙大\\,因此乙大的機率為{124\over 125}\times {1\over 2}= \bbox[red, 2pt]{62\over 125}
解答:假設\cases{a=2^x\\ b=3^x},則6^{x+1}-3\cdot 8^x+ 2\cdot 27^x-36^x = 6ab-3a^3+2b^3-a^2b^2 \\ =3a(2b-a^2) +b^2(2b-a^2) = (3a+b^2)(2b-a^2) = 0 \Rightarrow a^2=2b \Rightarrow 2^{2x}=2\cdot 3^x \\ \Rightarrow 2x\log 2=\log 2+ x\log 3 \Rightarrow x(2\log 2-\log 3)=\log 2 \Rightarrow x={\log 2\over 2\log 2-\log 3} \\ \Rightarrow {x\over 2x-1} ={\log 2/(2\log 2-\log 3) \over \log 3/(2\log 2-\log 3)} ={\log 2\over \log 3} =\bbox[red, 2pt]{\log_3 2}
解答:
解答:{P在x軸移動Q在y軸移動⇒{P(a,0)Q(0,b),又{¯PQ=10¯PR:¯RQ=3:2⇒{a2+b2=102R=25P+35Q⇒{b2=100−a2R(25a,35b)≡R(x,y)⇒259y2=100−254x2⇒x216+y236=1⇒R的軌跡為一橢圓⇒R(4cosθ,6sinθ)⇒令d=R至(2,0)的距離=√(4cosθ−2)2+36sin2θ=√20sin2θ−16cosθ+20=√−20cos2θ−16cosθ+40⇒{cosθ=−2/5⇒M=6√30/5cosθ=1⇒m=2⇒(M,m)=(6√305,2)
貳、填充題第二部分
解答:⟨an⟩=x,y,x+y,x+2y,2x+3y,3x+5y,5x+8y,8x+13y,13x+21y,21x+34y,34x+55y,...由於x,y∈N,從右向左試,找第一個an=115,可得13x+21y=115⇒{x=4y=3⇒x+y=7解答:{lim
解答:\cases{E(X)=1 \\ E(X^2)=3 \\ E(Y)=2 \\ E(Y^2)=5 \\ E(XY)=3} \Rightarrow \cases{Var(X)= E(X^2)-(E(X))^2 =3-1=2\\ Var(Y)= E(Y^2)-(E(Y))^2 =5-4=1 \\Cov(X,Y) = E(XY)-E(X)E(Y) =3-2=1} \\ \Rightarrow Var(3X-2Y+7) = 9Var(X)+4Var(Y)-12Cov(X,Y) =18+4-12= \bbox[red, 2pt]{10}
解答:假設f(x)=x^3+a_2x^2 +a_1x +a_0,且f(x)=0的三根為b,c,d;\\由於abcd=-5 \Rightarrow bcd=-5/a \Rightarrow a_0=5/a \Rightarrow f(x)=x^3+a_2x^2 +a_1x +{5\over a}\\ 再由f(x)=0的三根為b,c,d \Rightarrow \cases{f(x+1)=0的三根為b-1,c-1,d-1 \\f(x+2)=0的三根為b-2,c-2,d-2 \\f(x+3)=0的三根為b-3,c-3,d-3 } \\ \Rightarrow \cases{f(x+1)的常數項= 1+a_2+a_1+5/a= -(b-1)(c-1)(d-1)= -11/a \\f(x+2)的常數項= 8+4a_2 +2a_1+5/a= -(b-2)(c-2)(d-2) = -33/a\\ f(x+3)的常數項= 27+9a_2 +3a_1+5/a= -(b-3)(c-3)(d-3)= -73/a} \\ \Rightarrow \cases{a_1=17/2\\ a_2= -3/2 \\ a=-2} \Rightarrow f(x)=x^3-{3\over 2} x^2+{17\over 2}x- {5\over 2} \Rightarrow f(x-1)=0的三根為b+1,c+1,d+1\\ \Rightarrow (b+1)(c+1)(d+1)= (-1)\times f(x-1)的常數項 =(-1) \times (-1-{3\over 2}-{17\over 2}-{5\over 2}) ={27\over 2} \\ \Rightarrow a(b+1)(c+1)(d+1)= -2\times{27\over 2}= \bbox[red, 2pt]{-27}
解答:三次函數f(x)=ax^3+ bx^2 +cx +d 的對稱中心點為(-{b\over 3a},f(-{b\over 3a})),\\因此\cases{-{b\over 3a}=1 \Rightarrow b=-3a \cdots(1)\\ f(-{b\over 3a})=f(1)= a+b+c+d= 2 \cdots(2)} ;又f'(2)= -4 \Rightarrow 12a+4b+c = -4\cdots(3)\\ 將(1)代入(3)\Rightarrow c=-4代入(2) \Rightarrow a-3a-4+d=2 \Rightarrow d=2a+6 \\ \Rightarrow k=\lvert{b^2+c^2 +d^2 \over a} \rvert = \lvert{9a^2+16 +4a^2+24a+36 \over a} \rvert = \lvert{13a^2+ 24a+52 \over a} \rvert = \lvert 13a+ 24+{52 \over a} \rvert \\ 若a\gt 0,則 13a + {52\over a} \ge 2\sqrt{13a \cdot {52\over a}} = 2\cdot 26=52;若a \lt 0,則13a + {52\over a} \ge -52;\\ 因此k的最小值發生在 13a+ {52 \over a} =-52,此時k=|-52+24|=|-28|= \bbox[red, 2pt]{28}
解答: 甲乙皆在A箱抽中1號球的情形:甲抽中1號球的機率{2\over 6},乙隨後抽中1號球的機率{1\over 5}\\,因此機率為{2\over 6}\times {1\over 5}={1\over 15};甲乙皆在A箱抽中2號球或3號球的機率都是{1\over 15}\\,也就是甲乙在A箱抽中同號球的機率為{1\over 15}\times 3={1\over 5};\\ 甲乙兩人在三箱皆抽同號的機率就是({1\over 5})^3 ={1\over 125}\\,因此甲乙兩人取得不同的三位數機率為1-{1\over 125}={124\over 125},而一半是甲大,另一半是乙大\\,因此乙大的機率為{124\over 125}\times {1\over 2}= \bbox[red, 2pt]{62\over 125}
解答:假設\cases{a=2^x\\ b=3^x},則6^{x+1}-3\cdot 8^x+ 2\cdot 27^x-36^x = 6ab-3a^3+2b^3-a^2b^2 \\ =3a(2b-a^2) +b^2(2b-a^2) = (3a+b^2)(2b-a^2) = 0 \Rightarrow a^2=2b \Rightarrow 2^{2x}=2\cdot 3^x \\ \Rightarrow 2x\log 2=\log 2+ x\log 3 \Rightarrow x(2\log 2-\log 3)=\log 2 \Rightarrow x={\log 2\over 2\log 2-\log 3} \\ \Rightarrow {x\over 2x-1} ={\log 2/(2\log 2-\log 3) \over \log 3/(2\log 2-\log 3)} ={\log 2\over \log 3} =\bbox[red, 2pt]{\log_3 2}
解答:
移動矩形ABCD,將A視為原點,\overline{AC}在x軸上,見上圖;\\ \overline{AC}= \sqrt{\overline{AD}^2 +\overline{DC}^2 } = 5,又\overline{AD} \times \overline{DC}=\overline{AC}\times \overline{DE} \Rightarrow \overline{DE}=12/5;\\同理,直角\triangle CDE \Rightarrow \overline{EC}=9/5;\\矩形ABCD在x-y平面上,D繞x軸旋轉\theta ,因此D({16 \over 5},-{12\over 5}\cos \theta,{12\over 5}\sin \theta) \\ \Rightarrow \overline{BD}=\sqrt{({7\over 5})^2 +({12\over 5})^2(1-\cos \theta)^2 +({12\over 5})^2\sin^2 \theta} =\sqrt{{49\over 25}+{144\over 25} (2-2\cos \theta) }\\ = \bbox[red, 2pt]{\sqrt{337-288\cos \theta}\over 5}
參、計算證明題(第一題 9 分,第二題 10 分,合計 19 分)
解答:
通過A(-6,9)與L垂直的直線L':4x-3y=-51,假設通過B且與L'平行的直線L'':4x-3y=k\\ 正射長=12 \Rightarrow d(L',L'')=12 \Rightarrow k=9 \Rightarrow L'':4x-3y=9 \Rightarrow 假設B(3a,4a-3)\\ \Rightarrow (3a-1)^2+(4a-7)^2=50 \Rightarrow 25a^2-62a=0 \Rightarrow \cases{a=0\\ a=62/25} \Rightarrow \cases{B(0,-3)\\ B(62/25,173/25)} \\ \Rightarrow \cases{\overrightarrow{AB}=(6,-12) \\ \overrightarrow{AB}=({212\over 25}, -{52\over 25})} \Rightarrow 顯然B=(0,-3)有較大的|\overrightarrow{AB}| =\sqrt{180}=\bbox[red, 2pt]{6\sqrt 5}
解答:\mathbf{(1)}\; f(x)=x^4+x^3+x^2+x+1 = (x-\alpha) (x-\beta) (x-\gamma) (x-\phi) \\ \Rightarrow f'(x)=4x^3+3x^2+2x+1 \\= (x-\beta) (x-\gamma) (x-\phi) +(x-\alpha) (x-\gamma) (x-\phi) +(x-\alpha) (x-\beta) (x-\phi) +(x-\alpha) (x-\beta) (x-\gamma) \\ 因此{1\over 1-\alpha}+{1\over 1-\beta} +{1\over 1-\gamma}+{1\over 1-\phi} \\={ (1-\beta)(1-\gamma )(1-\phi)+ (1-\alpha) (1-\gamma )(1-\phi) +(1-\alpha) (1-\beta)(1-\phi)+ (1-\alpha) (1-\beta)(1-\gamma ) \over (1-\alpha) (1-\beta)(1-\gamma )(1-\phi)}\\ ={f'(1)\over f(1)} ={10\over 5} =\bbox[red, 2pt]2 \\\mathbf{(2)}\; \overline{AP} \times \overline{AQ} \times \overline{AR} \times \overline{AS} =|1+i-\alpha| \times|1+i-\beta| \times|1+i-\gamma| \times|1+i-\phi| \\ =|(1+i-\alpha) \times(1+i-\beta) \times(1+i-\gamma) \times(1+i-\phi)| =|f(1+i)| \\=|-4+(2i-2)+ 2i+(1+i)+1|=|5i-4|= \bbox[red, 2pt]{\sqrt{41}}
解答:\mathbf{(1)}\; f(x)=x^4+x^3+x^2+x+1 = (x-\alpha) (x-\beta) (x-\gamma) (x-\phi) \\ \Rightarrow f'(x)=4x^3+3x^2+2x+1 \\= (x-\beta) (x-\gamma) (x-\phi) +(x-\alpha) (x-\gamma) (x-\phi) +(x-\alpha) (x-\beta) (x-\phi) +(x-\alpha) (x-\beta) (x-\gamma) \\ 因此{1\over 1-\alpha}+{1\over 1-\beta} +{1\over 1-\gamma}+{1\over 1-\phi} \\={ (1-\beta)(1-\gamma )(1-\phi)+ (1-\alpha) (1-\gamma )(1-\phi) +(1-\alpha) (1-\beta)(1-\phi)+ (1-\alpha) (1-\beta)(1-\gamma ) \over (1-\alpha) (1-\beta)(1-\gamma )(1-\phi)}\\ ={f'(1)\over f(1)} ={10\over 5} =\bbox[red, 2pt]2 \\\mathbf{(2)}\; \overline{AP} \times \overline{AQ} \times \overline{AR} \times \overline{AS} =|1+i-\alpha| \times|1+i-\beta| \times|1+i-\gamma| \times|1+i-\phi| \\ =|(1+i-\alpha) \times(1+i-\beta) \times(1+i-\gamma) \times(1+i-\phi)| =|f(1+i)| \\=|-4+(2i-2)+ 2i+(1+i)+1|=|5i-4|= \bbox[red, 2pt]{\sqrt{41}}
========== END ========
解題僅供參考,學校未公布計算題題目,其它教甄試題及詳解
沒有留言:
張貼留言