104年公務人員普通考試試題
類 科: 經建行政、交通技術
科 目: 統計學概要
解答:$$令\cases{X:台幣薪資\\ Y:日幣薪資} \Rightarrow Y=aX, a為匯率,且a\gt 1\\(一)日幣薪資變異係數={\sigma(Y)\over \mu(Y)} ={\sigma(aX)\over \mu(aX)} ={a\sigma(X)\over a\mu(X)} ={\sigma(X)\over \mu(X)}=台幣薪資變異係數 \Rightarrow \bbox[red,2pt]{不變}\\(二)令Z=年齡 \Rightarrow r(Y,Z)={\sum YZ-\sum Y\sum Z/n\over \sqrt{\sum Y^2-(\sum Y)^2/n} \cdot \sqrt{\sum Z^2-(\sum Z)^2/n}} \\={a\sum XZ-a\sum X\sum Z/n\over \sqrt{a^2\sum X^2-a^2(\sum X)^2/n} \cdot \sqrt{\sum Z^2-(\sum Z)^2/n}}\\ ={\sum XZ-\sum X\sum Z/n\over \sqrt{\sum X^2-(\sum X)^2/n} \cdot \sqrt{\sum Z^2-(\sum Z)^2/n}}=r(X,Z)\\ \Rightarrow R(Y,Z)= R(X,Z) \Rightarrow \bbox[red,2pt]{不變}\\(三)日幣檢定統計量t_Y= {\bar Y-5000a\over \sigma(Y)/\sqrt n}= {a\bar X-5000a\over a\sigma(X)/\sqrt n} = {\bar X-5000\over \sigma(X)/\sqrt n}=t_X \Rightarrow \bbox[red,2pt]{不變}\\(四)日幣迴歸直線斜率b_Y=r(Y,Z)\cdot {\sigma(Y)\over \sigma(Z)} =r(X,Z)\cdot {a\sigma(X)\over \sigma(Z)} =a\cdot b_X \Rightarrow \bbox[red,2pt]{變大}\\(五)假設將員工依教育程度分為k組,每組有n_i人,i=1-k \Rightarrow 總人數n=\sum_{i=1}^k n_i \\ \Rightarrow F_Y={MSTR\over MSE} ={SSTR/(k-1)\over SSE/(n-k)} ={\sum_{i=1}^k n_i(\bar y_i-\bar y)^2/(k-1)\over\sum_{j=1}^k \sum_{i=1}^{n_i} (y_{i,j}-\bar y_j)^2/(n-k)} \\ ={a^2\sum_{i=1}^k n_i(\bar x_i-\bar x)^2 /(k-1)\over a^2 \sum_{j=1}^k \sum_{i=1}^{n_i} (x_{i,j}-\bar x_j)^2/(n-k)} =F_X\Rightarrow \bbox[red,2pt]{不變}$$解答:
解答:
解答:
(一)$$\begin{array}{}X& Y &X^2 & Y^2 & XY \\ \hline 0 & 2 & 0 & 4 & 0\\4 & 4 & 16 & 16 & 16\\2 & 3 & 4 & 9 & 6\\1 & 1 & 1 & 1 & 1\\3 & 5 & 9 & 25 & 15\end{array} \Rightarrow \cases{\sum X =10 \\ \sum Y=15\\ \sum X^2=30\\ \sum Y^2=55 \\ \sum XY=38}\\ \Rightarrow 相關係數r={\sum XY-\sum X\sum Y/n\over \sqrt{\sum X^2-(\sum X)^2/n}\cdot \sqrt{\sum Y^2-(\sum Y)^2/n}}\\ ={38-10\cdot 15/5 \over \sqrt{30-10^2/5}\cdot \sqrt{55-15^2/5}} ={8\over 10}\\ \cases{H_0:相關係數=0\\ H_1:相關係數\ne 0\\ 拒絕域C=\{t\mid t\gt |t_{\alpha/2}(n-2)|= |t_{0.025}(3)|= 3.1824\}} \\ 檢定統計量t=r\cdot \sqrt{n-2\over 1-r^2} ={8\over 10}\cdot \sqrt{3\over 36/100}={4\over \sqrt 3}=2.309 \not \in C \Rightarrow 不能拒絕H_0 \\ \Rightarrow \bbox[red,2pt]{沒有證據顯示相關係數不為0}$$(二)$$Y_i= \beta X_i+\varepsilon_i \Rightarrow \hat Y_i=\beta X_i \Rightarrow f(\beta)=SSE = \sum (Y_i-\hat Y_i)^2 = \sum(Y_i-\beta X_i)^2\\ 令f'=0 \Rightarrow 2\sum(Y_i-\beta X_i) (-X_i)=0 \Rightarrow \sum (Y_i-\beta X_i) X_i=0 \\ \Rightarrow \sum X_iY_i-\beta\sum X_i^2=0 \Rightarrow \beta ={\sum X_iY_i\over \sum X_i^2} = {38\over 30} = \bbox[red,2pt]{1.2667}$$
================= END ====================
解題僅供參考,其他國考試題及詳解
沒有留言:
張貼留言