Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2022年3月11日 星期五

109年全國科學班資格考-數學詳解

109年度全國科學班聯合學科資格考-數學科

第壹部分:單選題、多選題及填充題
一、單選題:(共二題,每題5分,共10分)

解答{2+log2a=k3+log3b=klog6(a+b)=k{a=2k2b=3k3a+b=6k1a+1b=a+bab=6k2k23k3=6k26k3=632=2162=108(4)
解答{p=1/6q=2/6r=3/6p1=p+(1p)(1q)(1r)p+((1p)(1q)(1r))2p+=p1(1p)(1q)(1r)p2=(1p)q+(1p)(1q)(1r)(1p)q+((1p)(1q)(1r))2(1p)q+=(1p)q1(1p)(1q)(1r)p3=(1p)(1q)r+(1p)(1q)(1r)(1p)(1q)r+(1p)(1q)(1r))2(1p)(1q)r+=(1p)(1q)r1(1p)(1q)(1r){p=1/6=3/18(1p)q=5/18(1p)(1q)r=5/18p2=p3>p1(4)

二、多選題: (共三題,每題 5 分,共 15 分)

解答(1):3312(2):124184243C124C84C44(3)×:(2)3,3,6C123C93C66×3(4):x+y+z=12x+y+z=9H39=C112(5):x+y+z+w=12x,y,z8(7)H412C31H4128=C153C31C73(1245)
解答(1):sin(A+B)=sinAcosB+sinBcosA=2sinAcosBsinAcosBsinBcosA=0sin(AB)=0A=B(2)×:cos(A+B)=cosAcosBsinAsinB=2cosAcosBcosAcosB+sinAsinB=0cos(AB)=0AB=±90(3):sin(A+B)=sinB180(A+B)=BA+2B=180=A+B+CB=C(4)×:{A=30B=60C=90sin(2A)=sin(2B)(5):cos(2A)=cos(2B)A=B(135)
解答f(x)=ax4+bx3+cx2+dx+ef(x)=4ax3+3bx2+2cx+d(1):f(x)=0α,β,γ{y=f(x)a>0|β|<|α|<|γ|α+β+γ=3b/4a>0b<0(2):αβ+βγ+γα=2c/4a<0c<0(3)×:αβγ=d/4a<0d>0(4):f(x)=12ax2+6bx+2c=036b296ac>03b28ac>0(5):α,β,γf(x)=0(1245)

三、 填充題: (共五題,每題 5 分,共 25 分)

解答{u=ABv=AC{|u|=|v|=2uv=|u||v|cos60=2212=2{AP=20u+vAQ=u+20v{|AP|2=400|u|2+|v|2+40uv=1600+4+80=1684|AQ|2=|AP|2=1684(APAQ)2=20|u|2+20|v|2+401uv=80+80+802=962APQ=12|AP|2|AQ|2(APAQ)2=12168429622=127983=3993
B. 丟擲一個公正骰子(即點數 1,2,3,4,5,6每個點數出現的機率皆為16)三次,設依序出現的點數為 a,b,c,定義隨機變數X如下:若a是3的倍數,則X=b+c,若a不是3的倍數,則X=|bc|,試求P(X=4)的值為_____。

解答a(b,c)3,6(1,3),(2,2),(3,1)2×3=61,2(1,5),(2,6)4×4=164,5(5,1),(6,2)P(X=4)=6+1663=11108
C. 在 xy 平面上有一個圓 C:x2+y2=16O為圓心,且在y軸上有一點 A(0,8),若有一光線自A點射向第一象限中圓C上某一點 P,經反射之後平行 x軸射出經過A點,且AA兩點對稱於OP,試問 P點的 y座標為___。
解答
PC:x2+y2=42P(4cosθ,4sinθ)OP:y=tanθxAPyA(a,4sinθ)MA=AM[cos2θsin2θsin2θcos2θ][08]=[a4sinθ]8cos2θ=4sinθ8(12sin2θ)=4sinθ4sin2θsinθ2=0sinθ=1+338(P)4sinθ=1+332
解答
z12z9+z6z3+1=0(z3+1)(z12z9+z6z3+1)=0z15=1{z15=115(zk=cos(π+2kπ15)+isin(π+2kπ15),k=014)1515z3=13(zk=cos(π+2kπ3)+isin(π+2kπ3),k=02)1515z12z9+z6z3+1=01215A,F,K9¯IJ+3¯JL{IOJ=24¯IJ=2sin12=2(1a)/2JOL=48¯JL=2sin24=21a29¯IJ+3¯JL=181a2+61a2

解答{(0,0)2a=42b=3:x24+y29/4=1y=344x2()=21344x2dx=34π/4π/344cos2θ(2)sinθdθ(

第貳部分:非選擇題 (數學寫作能力、計算證明題共 50 分)

四、 數學寫作能力: (共二題,共計 12 分)

解答假設A(x_1,y_1, z_1)在平面E上,且\overleftrightarrow{PA}\bot E,則\overline{PA}即為所求;\\ E的法向量\vec n= (a,b,c) 與\overrightarrow{PA} =(x_1-x_0,y_1-y_0, z_1-z_0)平行 \\,即{ x_1-x_0 \over a} ={ y_1-y_0 \over b} ={z_1-z_0 \over c}=t \Rightarrow \cases{x_1=at+ x_0\\ y_1=bt+y_0 \\ z_1=ct+z_0};\\又A在E上\Rightarrow a(at+x_0 )+ b(bt+y_0) +c(ct+z_0)+ d=0 \Rightarrow t=-{ax_0+ by_0 +cz_0+ d\over a^2+b^2+c^2} \\\Rightarrow \left| \overrightarrow{PA}\right| =\left| t \vec n\right| =\left|-{ax_0+ by_0 +cz_0 +d\over a^2+b^2+c^2}\cdot \sqrt{a^2+b^2 +c^2} \right| =\left|{ax_0+ by_0 +cz_0 +d\over\sqrt{a^2+b^2 +c^2}}   \right| \\\bbox[red,2pt]{故得證}
解答(1)(\cos \theta+i\sin\theta)^n = \cos n\theta + i\sin n\theta\\ (2)利用歸納法:\\ n=1時,顯然成立\\ 假設n=k成立,即z^k+{1\over z^k}=2\cos k\theta;\\ 當n=k+1時,z^{k+1}+{1\over z^{k+1}} =(z^k+{1\over z^k}) (z+{1\over z}) - (z^{k-1}+ {1\over z^{k-1}})  =2\cos k\theta \cdot 2\cos \theta-2\cos(k-1)\theta \\ =4\cos k\theta\cos \theta-2\cos (k\theta-\theta) =4\cos k\theta\cos \theta-2(\cos k\theta\cos \theta +\sin k\theta \sin \theta)\\ =2(\cos k\theta \cos\theta -\sin k\theta\sin \theta)=2 \cos(k+1)\theta  \Rightarrow z^{k+1}+{1\over z^{k+1}} =2 \cos(k+1)\theta \\ n=k+1時亦成立,\bbox[red,2pt]{故得證}

五、計算證明題: (共 5 題,共計 38 分)

解答圓:x^2+(y-b)^2=a^2 \Rightarrow \cases{圓心P(0,b) \\ 圓半徑r=a} \Rightarrow \cases{圓面積A=a^2\pi \\ P繞x軸一圈的圓周長=2b\pi} \\ \Rightarrow 圓繞x軸旋轉體積=(a^2\pi)\times (2b\pi)= 2a^2b\pi^2 ,\bbox[red,2pt]{故得證}

解答\cos \angle A= {\overline{AB}^2 +\overline{AC}^2 -\overline{BC}^2 \over 2\cdot \overline{AB}\cdot \overline{AC}} ={4^2+ 6^2 - (2\sqrt{19})^2 \over 2\cdot 4\cdot 6} =-{1\over 2} \Rightarrow \angle A=120^\circ \\ 令\angle BAP=\theta,則\angle CAP=120^\circ-\theta \Rightarrow \cases{\triangle ABP ={1\over 2}\cdot \overline{AB}\cdot \overline{AP}\sin \theta=4\sin \theta \\ \triangle ACP ={1\over 2}\cdot \overline{AC}\cdot \overline{AP}\sin (120^\circ-\theta) = 6 \sin (120^\circ-\theta)} \\ \Rightarrow \triangle ABP+\triangle ACP =4\sin\theta +6 \sin (120^\circ-\theta) =4\sin\theta +3\sqrt 3\cos\theta +3\sin\theta\\ =7\sin\theta +3\sqrt 3\cos \theta \Rightarrow 最大值為\sqrt{7^2 +(3\sqrt 3)^2} =\sqrt{76} =\bbox[red,2pt]{2\sqrt{19}}
解答
(1)由定義可知:\cases{g(2n)=g(n) \\ g(2n-1)=2n-1},n\in \mathbb{N},因此S_n = g(1)+ g(2)+\cdots +g(2^n) \\=\sum_{k=1}^{2^{n-1}} \left(g(2k-1)+g(2k) \right) = \sum_{k=1}^{2^{n-1}} \left(g(2k-1)+g(k) \right) =S_{n-1}+ \sum_{k=1}^{2^{n-1}}(2k-1) =S_{n-1} + {2^n\times 2^{n-1}\over 2}\\ =S_{n-1}+ 4^{n-1}\\ 當n=1時,S_1= g(1)+ g(2^1)= 1+1=2\Rightarrow \bbox[red,2pt]{ S_n= \begin{cases} 2,&n=1\\ S_{n-1}+ 4^{n-1}, &n\ge 2\end{cases} };(2)S_{2019}= S_{2018} +4^{2018} = S_{2017} +4^{2017} +4^{2018} = S_1 +4+ 4^2 +\cdots 4^{2018} \\=1+ (1+ 4+ 4^2 +\cdots 4^{2018})=1+{1-4^{2019}\over 1-4} =1+{1\over 3}(4^{2019}-1)\\ \Rightarrow S_{2019}= \bbox[red,2pt]{{1\over 3}(2+4^{2019})}
4.某個班級有36個學生,某次考試成績的算術平均數為50分,標準差為10分,試問最少有多少學生的分數介於35分到65分之間(不包含35分及65分)?

解答36位考生成績依序為:x_1\le x_2\le x_3 \le \cdots \le x_{36},且\cases{\bar x= (x_1+x_2+\cdots +x_{36})/36= 50\\[1ex] \sigma= \sqrt{{1\over 36}\sum_{i=1}^{36}(x_i-\bar x)^2} =10} \\ 令A=\{x_i\mid x_i\ge 65或x_i\le 35,i=1-36\},則我們有(x-\bar x)^2=(x-50)^2  \le 15^2, \forall x\in A\\若A有n個元素,則 \sum_{x_i\in A}(x_i-50)^2 \le 225n \le \sum_{i=1}^{36}(x_i-50)^2 =10^2 \times 36=3600\\ \Rightarrow 225n \le 3600 \Rightarrow n\le 16 \Rightarrow 至少有36-16=\bbox[red,2pt]{20}位成績介於36與64之間
解答
(1)\cases{P(x_0,y_0)\\ F_1(c,0) \\[1ex]{x^2\over a^2} +{y^2\over b^2}=1} \Rightarrow \overline{PF_1}^2 =  (x_0-c)^2 +y_0^2 = (x_0-c)^2 + b^2\left(1-{x_0^2\over a^2} \right)\\ = (x_0-c)^2 + (a^2-c^2)\left(1-{x_0^2\over a^2} \right) = x_0^2-2cx_0+ c^2 +a^2-x_0^2-c^2+{c^2\over a^2}x_0^2 ={c^2\over a^2}x_0^2 -2cx_0+a^2\\ =({c\over a}x_0-a)^2  \Rightarrow \overline{PF_1} =\left|{c\over a}x_0-a \right|\\ 又{x_0^2\over a^2} +{y_0^2\over b^2}=1 \Rightarrow {x_0^2\over a^2}\lt 1 \Rightarrow -1\lt {x_0\over a} \lt 1 \Rightarrow   -c\lt c\cdot {x_0\over a} \lt c \lt a \Rightarrow \left|{c\over a}x_0-a \right| =a-{c\over a}x_0\\ \Rightarrow \overline{PF_1} =a-{c\over a}x_0,\bbox[red,2pt]{故得證}(2){x^2\over 25} +{y^2\over 16}=1 \Rightarrow \cases{a=5\\ b=4} \Rightarrow c=3 \Rightarrow \cases{F_1(3,0)\\ F_2(-3,0)} \\ 令P(s,t),由\cases{\overline{PF_1} +\overline{PF_2} =2a=10\\ \overline{PF_1} :\overline{PF_2}= 2:3} \Rightarrow \cases{\overline{PF_1}=4 \\ \overline{PF_2}=6} \Rightarrow \cases{(s-3)^2+ t^2 =16\\ (s+3)^2+t^2=36} \\ \Rightarrow (s+3)^2 -(s-3)^2 =20 \Rightarrow 12s =20 \Rightarrow s=5/3 \Rightarrow {16\over 9}+t^2 =16 \Rightarrow t^2={128\over 9} \\ \Rightarrow t=\pm {8\sqrt 2\over 3} \Rightarrow \bbox[red,2pt]{P\left({5\over 3},\pm {8\sqrt 2\over 3}\right)}

=================== END ===========================

解題僅供參考

沒有留言:

張貼留言