111 學年度身心障礙學生升學大專校院甄試
甄試類(群)組別:四技二專組-數學(A)
單選題,共 20 題,每題 5 分
解答:$$2\log_{10} 2+\log_{10}25- \log_2\left(\cfrac{1}{8}\right)+\log_2 1 =2\log_{10} 2+\log_{10}5^2- \log_22^{-3}+0 \\=2\log_{10} 2+ 2\log_{10}5 +3\log_2 2 =2\log_{10} 2+ 2\log_{10}{10\over 2} +3 =2\log_{10} 2+ 2(1-\log_{10} 2) +3 \\ =2+3=5,故選\bbox[red, 2pt]{(D)}$$
解答:$$2\sin(-30^\circ) +\cos(0^\circ) +\tan(135^\circ) =2\cdot(-{1\over 2})+1 -1=-1,故選\bbox[red, 2pt]{(C)}$$
解答:$$標準差變為8\times 1.1=8.8 \ne 10.8,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{({1\over 2})^{-1.2} =2^{1.2} \\ ({1\over 3})^{-1.2}=3^{1.2}},由於3^{1.2}\gt 2^{1.2} \Rightarrow ({1\over 3})^{-1.2} \gt ({1\over 2})^{-1.2},故選\bbox[red, 2pt]{(D)}$$
解答:$$f(x)=(2x-1)Q(x)+r \Rightarrow xf(x)= x(2x-1)Q(x)+ rx =2x(x-{1\over 2})Q(x)+ r(x-{1\over 2})+{r\over 2}\\ =(x-{1\over 2})(2xQ(x)+r)+ {r\over 2} \Rightarrow \cases{商式=2xQ(x)+r\\ 餘式={r\over 2}},故選\bbox[red, 2pt]{(B)}$$
解答:$$x^2+y^2+4x=9 \Rightarrow (x+2)^2+y^2 = 13 \Rightarrow 圓心O(-2,0) \Rightarrow \vec n=\overrightarrow{OP} =(3,2)\\ \Rightarrow 切線方程式: 3(x-1)+2(y-2)=0 \Rightarrow 3x+2y-7=0 \Rightarrow -3x-2y+7=0\\ \Rightarrow \cases{a=-3\\ b=-2} \Rightarrow a+b=-5,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{f(1)=8\\ f'(1)=0} \Rightarrow \cases{a+b+5=8\\ 2a+b=0} \Rightarrow \cases{a=-3\\ b=6},故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{a=\sin 20^\circ \\ b=\cos 20^\circ =\sin 70^\circ \\ c=\sin 45^\circ } \Rightarrow b\gt c\gt a,故選\bbox[red, 2pt]{(A)}$$
解答:$$f(x)= x^3-4x+3 =(x-1)^3+a(x-1)^2+b(x-1)\\ \Rightarrow \cases{f(0)=3 =-1+a-b\\ f(2)=8-8+3 =1+a+b} \Rightarrow \cases{a-b=4\\ a+b=2} \Rightarrow \cases{a=3\\ b=-1} \Rightarrow 2a-b=6+1=7,故選\bbox[red, 2pt]{(D)}$$
解答:$$兩隧道都不通的機率為0.4\times 0.3=0.12,因此能通行的機率=1-0.12=0.88 \approx 0.9,故選\bbox[red, 2pt]{(D)}$$
解答:$$25+25\times {3\over 5}+ 25\times {3\over 5} +25\times {3\over 5}\times {3\over 5}=25+ 15+15+9=64,故選\bbox[red, 2pt]{(D)}$$
解答:$$f(x)=-2^{-x}+b 為遞增函數\Rightarrow f(0)=b-1 \gt 0 \Rightarrow b\gt 1,故選\bbox[red, 2pt]{(A)}$$
解答:$${2-x \over x+1} \ge 0 \Rightarrow (2-x)(x+1)\ge 0 \Rightarrow (x-2)(x+1)\le 0 \Rightarrow -1\le x\le 2,但分母x+1\ne 0\\ ,因此-1\lt x\le 2,故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{甲成績:\langle a_n\rangle \\乙成績:\langle b_n\rangle} \Rightarrow \cases{首項a_1=42, 公差d_a \\首項b_1=90, 公差d_b} \Rightarrow a_7=b_7 \Rightarrow 42+6d_a=90+6d_b \Rightarrow d_a-d_b= 8\\ \Rightarrow a_{12}-b_{12}= a_1+11d_a-b_1-11d_b =a_1-b_1+11(d_a-d_b)= 42-90+11\times 8 = 40,故選\bbox[red, 2pt]{(C)}$$
解答:$$ -1\lt x\lt 2\Rightarrow \cases{ |2x+3|=2x+3 \\ |x-3|=3-x} \Rightarrow |2x+3|+|x-3|-6 = 2x+3+3-x -6=x,故選\bbox[red, 2pt]{(A)}$$
解答:$$\log 3=n \Rightarrow \log 75=\log (5^2\times 3)= \log 3+2\log 5= n+2\log 5=m \Rightarrow \log 5=(m-n)/2 \\ \Rightarrow \log \cfrac{9}{125} =\log 9-\log 125 =2\log 3-3\log 5=2n-{3\over 2}(m-n) = \cfrac{7n-3m}{2},故選\bbox[red, 2pt]{(B)}$$
解答:$$\cases{出現3個人頭:機率={1\over 8}、得1000元\\ 出現3個10圓:機率={1\over 8}、得1200元\\ 其他情況:機率={6\over 8}、賠500元} \\\Rightarrow 期望值={1\over 8}(1000+1200) -{6\over 8}\cdot 500 = 275-375=-100,故選\bbox[red, 2pt]{(A)}$$
解答:$$早上8:00至下午4:00,共騎了8小時,騎了8\times 8=64公里,因此里程標示為34+64= 98\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$甲、乙從四種職務挑二種來擔任,有C^4_2\times 2=12種選法;\\剩下10人擔任二種職務,共有C^{10}_2\times 2=90選法;\\ 因此共有12\times 90=1080種選法;,故選\bbox[red, 2pt]{(C)}$$
========================= END ==============================
解題僅供參考,其他歷屆試題及詳解
沒有留言:
張貼留言