109年度自學進修國民中小學畢業程度〈含身心障礙國民〉
學力鑑定 國中級-數學
一、選擇題:(每題3分,共90分)
解答:3^2+4^2 =9+16=25 =5^2,故選\bbox[red,2pt]{(2)}
解答:0不是任何數的因數,故選\bbox[red,2pt]{(3)}
解答:6-3\times (-2)= 6-(-6) = 6+6=12,故選\bbox[red,2pt]{(4)}
解答:(-5)\times(-2)^4\div 10 =(-5) \times 16\div 10 = -80\div 10=-8,故選\bbox[red,2pt]{(4)}
解答:\cases{12^2=144\\ 13^2=169 \\ 14^2=196 \\ 15^2=225\\ 16^2= 256} \Rightarrow 169\lt 180\lt 196 \Rightarrow 13\lt \sqrt{180} \lt 14,故選\bbox[red,2pt]{(2)}
解答:2\sqrt 3-3\sqrt 7+6\sqrt 3+9\sqrt 7 =(2\sqrt 3+6\sqrt 3)+ (9\sqrt 7-3\sqrt 7) =8\sqrt 3+6\sqrt 7,故選\bbox[red,2pt]{(1)}
解答:-{2\over 3}+{3\over 5} =-{10\over 15}+ {9\over 15} =-{1 \over 15},故選\bbox[red,2pt]{(3)}
解答:4x+7-2x-2= 2x+5 ,故選\bbox[red,2pt]{(1)}
解答:\cases{1/3-1/2=-1/6\\ 1/4-1/3=-1/12} \Rightarrow {1\over 3}-{1\over 2} \ne {1\over 4}-{1\over 3},故選\bbox[red,2pt]{(4)}
解答:\cases{24=2^3\times 3\\ 36=2^2\times 3^2\\ 48= 2^4\times 3} \Rightarrow [24,36,48]= 2^4\times 3^2=144,故選\bbox[red,2pt]{(3)}
解答: 0.000318 = {3.18\over 10000} = 3.18\times 10^{-4},故選\bbox[red,2pt]{(2)}
解答:\cases{3\sqrt{50}= 15\sqrt 2\\[1ex] \sqrt{7 \over 24}= {\sqrt 7\over 2\sqrt{6}} ={\sqrt{42} \over 12} \\[1ex] {1\over \sqrt 7}={\sqrt 7\over 7}},故選\bbox[red,2pt]{(3)}
解答:\overline{OP} \lt 圓半徑,故選\bbox[red,2pt]{(4)}
解答:4+10= 14,故選\bbox[red,2pt]{(1)}
解答:外角是36^\circ \Rightarrow 內角為180^\circ-36^\circ =144^\circ \Rightarrow {(n-2)\times 180\over n}=144 \Rightarrow 180n-360=144n\\ \Rightarrow 36n=360 \Rightarrow n=10,故選\bbox[red,2pt]{(2)}
解答:f(x)是常數函數\Rightarrow f(x)=k \Rightarrow f(1)+f(2)+f(3)+f(4) +f(5)= k+k +k +k +k = 5k=15\\ \Rightarrow k=3 \Rightarrow f(6) =k = 3,故選\bbox[red,2pt]{(4)}
解答:(2)正方形有四條對稱軸,即2條對角線及2條對邊中點連線\\(3)等腰梯形只有1條對稱軸,即兩底中點連線\\ (4)菱形有2條對稱軸,即2條對角線\\,故選\bbox[red,2pt]{(1)}
解答:P(-3,4)與y軸距離=|-3|=3,故選\bbox[red,2pt]{(2)}
解答:{1\over 3}\le x\lt 3表示介於{1 \over 3}與3之間的區間,且不含3,故選\bbox[red,2pt]{(3)}
解答:\angle A+\angle B=180 \Rightarrow 2x+(3x-80)=180 \Rightarrow 5x=260 \Rightarrow x=52 \Rightarrow \angle A=2x^\circ = 104^\circ,故選\bbox[red,2pt]{(2)}解答:(1)頂點坐標為(-2,5)\\(2)頂點坐標為(0,5) \\(3)頂點坐標為(2,5) \\(4)頂點坐標為(2,-5)\\,故選\bbox[red,2pt]{(1)}
解答:原點在最大的負數及最小的正數之間,故選\bbox[red,2pt]{(4)}
解答:最大值為7,最小值為1,因此全矩=7-1=6,故選\bbox[red,2pt]{(3)}
解答:\cases{3x+y=-5 \cdots(1)\\ x-y=-3\cdots(2)},兩式相加\Rightarrow 4x=-8 \Rightarrow x=-2,再代回(2) \Rightarrow -2-y=-3 \Rightarrow y=1\\,故選\bbox[red,2pt]{(4)}
解答:圖形x截距及y截距都是正數,因此不經過第三象限,故選\bbox[red,2pt]{(3)}
解答:\sqrt{8^2+ 15^2 } =\sqrt{289} =17,故選\bbox[red,2pt]{(1)}
解答:柱體(長方體為四角柱)兩底面皆平行,故選\bbox[red,2pt]{(1)}
解答:13^2=5^2+12^2 \Rightarrow 該三角形為直角三角形 \Rightarrow 三角形面積={1\over 2}\times 5\times 12=30\\假設內切圓半徑為r \Rightarrow 三角形面積={r\over 2}\times(5+12+13) =15r = 30 \Rightarrow r=2,故選\bbox[red,2pt]{(2)}
解答:影印放大角度不變,故選\bbox[red,2pt]{(1)}
二、填充題: (每題 2 分,共計 10 分)
解答:3^5 \times 3^7 = 3^{5+7} =3^{12} \Rightarrow a=\bbox[red,2pt]{12}解答:\sqrt{36} +\sqrt{49}-\sqrt{81} =\sqrt{6^2} +\sqrt{7^2}-\sqrt{9^2} =6+7-9 = \bbox[red,2pt]{4}
解答:\overline{AB} =\sqrt{(3-7)^2 +((-2)-(-5))^2} =\sqrt{4^2+3^2} =\sqrt{5^2} = \bbox[red,2pt]{5}
解答:(5+11)\div 2= \bbox[red,2pt]{8}
解答:\cases{1個正方形需要4根棉花棒\\ 2個正方形需要7根棉花棒\\ 3個正方形需要10根棉花棒 } \Rightarrow n個正方形需要1+3n個棉花棒 \Rightarrow 20個正方形需要1+3\times 20= , \bbox[red,2pt]{61}
================== END ========================
解題僅供參考,其他歷屆試題及詳解
沒有留言:
張貼留言