Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2022年6月13日 星期一

111年香山高中教甄-數學詳解

新竹市立香山高級中學111學年度教師甄選

一、單選題(每題4分,共計60分)

解答1+2++9=4532aba+b373(a,b)=(1,2),(1,5),(1,8),(2,4),(2,7),(3,6),(3,9),(4,5),(4,8),(5,7),(6,9),(7,8)12(D)
解答:27sinA=48sin3A9sinA=163sinA4sin3A27sinA36sin3A=16sinA36sin3A11sinA=0sinA(36sin2A11)=0sinA=116cosA=5656=482+¯AC227296¯AC¯AC280¯AC+1575=0(¯AC35)(¯AC45)=0¯AC=3545(B)
解答

{sin2x+cos2y=y2(1)sin2y+cos2x=x2(2){(1)+(2)(2)(1){x2+y2=2:x2y2=cos(2x)cos(2y):{A(1,1)B(1,1)C(1,1)D(1,1)(B)
解答{z1=1+i32=e2πi/3z2=1i32=e4πi/3{z1011=e202πi/3=e66π+4πi/3=e4πi/3=z2z1012=e404πi/3=e134π+2πi/3=e2πi/3=z1z1011+z1012=z2+z1=1(A)
解答cosx=112x2+14!x4cosx2=112x4+14!x8{1cosx=12x214!x4+1cosx2=12x414!x8+limx01cosx21cosx=(1/2)1/2=2(D)
解答x2+18x+30=2(x+9)236(x+9)23615=2(x+9)236a15=2a, where a=(x+9)236a234a+225=0(a25)(a9)=0{(x+9)236=a=25(x+9)236=a=9(
解答{5n-23\over n-7}= 5+{12\over n-7} \Rightarrow n-7=\pm 1,\pm 2,\pm 3,\pm 4,\pm 6,\pm 12 \Rightarrow 共12個解,故選\bbox[red,2pt]{(C)}
解答取\cases{a=3\\ b=4\\ c=5}滿足a,b,c成等差;因此\cases{\tan A=3/4 \Rightarrow \tan(A/2)=1/3\\ \tan (C/2) = \tan 45^\circ =1} \Rightarrow \tan{A\over 2}\cdot \tan{C\over 2}={1\over 3}\\,故選\bbox[red,2pt]{(B)}
解答\cases{3a^2+ 2022a+8=0 \\ 8b^2+2022b + 3=0} \Rightarrow \cases{a=\cfrac{-2022\pm \sqrt{k}}{6} \\b=\cfrac{-2022\pm \sqrt{k}}{16}},\text{where }k=2022^2-4\cdot 3\cdot 8 \\ \Rightarrow (a,b)=(\cfrac{-2022+ \sqrt{k}}{6},\cfrac{-2022+ \sqrt{k}}{16})  或(\cfrac{-2022- \sqrt{k}}{6},\cfrac{-2022- \sqrt{k}}{16}) \Rightarrow {a\over b} ={16\over 6}={8\over 3} \\ 另兩組解將造成ab=1,不符要求,故選\bbox[red,2pt]{(C)}
解答\lim_{x\to 0} \cfrac{x^3 \sin{1\over x}}{\sin x} =\lim_{x\to 0} \cfrac{(x^3 \sin{1\over x})'}{(\sin x)'} =\lim_{x\to 0} \cfrac{3x^2 \sin{1\over x} -x\cos{1\over x}}{\cos x} ={0\over 1}=0,故選\bbox[red,2pt]{(B)}
解答\lim_{n\to \infty} {1\over \sqrt n}\left(1 +{1\over \sqrt 2}+{1\over \sqrt 3}+ \cdots+{1\over \sqrt n} \right)=\lim_{n\to \infty} \sum_{k=1}^n{1\over \sqrt n}\cdot {1\over \sqrt k} =\lim_{n\to \infty} \sum_{k=1}^n{1\over   n}\cdot {1\over \sqrt {(k/n)}}\\ =\int_0^1 {1\over \sqrt x}dx = \left. \left[ 2\sqrt x\right] \right|_0^1 =2,故選\bbox[red,2pt]{(C)}
解答令\overline{AB}=a,則 \cos C = {\sqrt 3\over 2}={(2+2\sqrt 3)^2+16-a^2\over 8(2+2\sqrt 3)} \Rightarrow a^2=8 \Rightarrow \overline{AB} =2\sqrt 2\\ \cos B={4^2+(2\sqrt 2)^2-(2+2\sqrt 3)^2\over 16\sqrt 2} = {\sqrt 2-\sqrt 6\over 4} \lt 0 \Rightarrow B=180^\circ-75^\circ = 105^\circ,故選\bbox[red,2pt]{(D)}
解答y=8^nx^2-2^n(2^n+1)x+1 = (2^{2n}x-1)(2^nx-1) \Rightarrow L_n= \overline{A_nB_n} ={1\over 2^n}-{1\over 2^{2n}} \\ \Rightarrow \sum_{n=1}^\infty L_n= \sum_{n=1}^\infty \left( {1\over 2^n}-{1\over 2^{2n}} \right) ={1/2\over 1-1/2}-{1/4\over 1-1/4} =1-{1\over 3}={2\over 3},故選\bbox[red,2pt]{(D)}
解答令\cases{f(x,y,z)=\cos 2x+\cos 2y+\cos 2z\\ g(x,y,z)=\cos x+\cos y+\cos z} \Rightarrow -3\le f,g,\le 3,則原式af+2(1-a)g=9a-6\\ \Rightarrow a(f-2g)+2g=9a-6 \Rightarrow a={6+2g\over 9-f+2g} 為整數\Rightarrow a=1,0\\ \cases{a=0 \Rightarrow 2g=-6 \Rightarrow g=\cos x+\cos y+\cos z=-3 \Rightarrow (x,y,z)=(\pi,\pi,\pi)\\ a=1 \Rightarrow f= \cos 2x+\cos 2y+\cos 2z=3 \Rightarrow (x,y,z)=(0,0,0),(\pi,\pi,\pi),(2\pi,2\pi,2\pi)}\\ 因此共有三組解,故選\bbox[red,2pt]{(C)}\\ 但a=1時,(x,y,z)=(0,0,2\pi),(0,2\pi,0),...也成立,應該有2^3+1(\pi,\pi,\pi)=\bbox[blue,2pt]{9}組解
解答假設m\gt n+1 \Rightarrow 4m\gt 4n+4 \Rightarrow m^2-4m \lt m^2-4n-4 \Rightarrow (m-2)^2 \lt m^2-4n \\ 又m^2-4n\lt m^2,因此(m-2)^2 \lt m^2-4n\lt m^2 \Rightarrow m^2-4n= (m-1)^2 = m^2-2m+1\\ \Rightarrow 2m= 4n+1 \Rightarrow 偶數=奇數,矛盾,因此m\not \gt n+1;只剩下m=n+1,m=n兩種情況;\\ 當m=n+1時,則\cases{m^2-4n= (n+1)^2-4n= (n-1)^2 為一完全平方數\\ n^2-4m= n^2-4n-4 = (n-2)^2-8 \Rightarrow n=5 \Rightarrow m=6}\\當m=n時,則n^2-4m= m^2-4n=n^2-4n \Rightarrow m=n=4\\ 同理,n\gt m+1亦矛盾,僅剩n=m+1與n=m兩種情形;\\因此(m,n)= (4,4),(5,6),(6,5)三組正整數解,故選\bbox[red,2pt]{(C)}

二、多選題(每題8分,共計40分;每題有5個選項,至少有一個是正確的選項)

解答
(A)\bigcirc: \angle EAF= \angle A-\angle BAE-\angle DAF = 90^\circ-30^\circ-15^\circ=45^\circ \\(B)\times: \cases{\overline{DF}= 2\sqrt 3\cdot \tan 15^\circ =  4\sqrt 3-6 \Rightarrow \overline{CF}= 2\sqrt 3-(4\sqrt 3-6)=6-2\sqrt 3 \\\overline{BE} =2\sqrt 3\cdot \tan 30^\circ = 2 \Rightarrow \overline{CE}= 2\sqrt 3-2} \\ \qquad \Rightarrow \overline{CF}/\overline{CE}= \sqrt 3 \Rightarrow \angle FEC=60^\circ \Rightarrow \angle AEF= 60^\circ \ne 75^\circ\\ (C)\bigcirc: \angle CFE = 180^\circ -\angle AEF-\angle C=30^\circ \\(D)\bigcirc: 由(B)可知:\overline{CE}= 2\sqrt 3-2 \\(E) \bigcirc: \overline{EF}= 2\overline{CE}= 4\sqrt 3-4\\,故選\bbox[red,2pt]{(ACDE)}
解答\sin A與\sin B為(m+5) x^2-(2m-5)x+12=0的二實根 \Rightarrow \cases{\sin A+\sin B=(2m-5)/(m+5)\\ \sin A\sin B=12/(m+5)} \\因此 (\sin A+\sin B)^2 =\sin^2 A+\sin ^2B + 2\sin A\sin B =1+2\sin A\sin B\\ \Rightarrow \left({2m-5\over m+5}\right)^2 =1+2 \cdot {12\over m+5} ={m+29\over m+5} \Rightarrow (2m-5)^2 = (m+29)(m+5) \Rightarrow m^2-18m-40=0\\ \Rightarrow (m-20)(m+2)=0 \Rightarrow m=20(\because m\gt 0, m=-2不合) \Rightarrow 25x^2-35x+12=0\\ \Rightarrow (5x-3)(5x-4)=0 \Rightarrow \cases{\sin A=3/5\\ \sin B=4/5} \Rightarrow {a\over \sin A}={b\over \sin B}=2R= 4 \Rightarrow \cases{a=12/5\\ b=16/5} \\ \Rightarrow \cases{a^2+b^2=c^2 = {400\over 25} \Rightarrow c={20\over 5}=4 \\a+b=28/5\\ ab= 192/25},故選\bbox[red,2pt]{(BCD)}
解答由題意可知:\cases{a^2+b^2=c^2 \\ a+b+c=126 \\ ab=630\times 2= 1260} \Rightarrow \cases{(a+b)^2 =(126-c)^2 =c^2-252c+ 126^2\\ (a+b)^2 = a^2+b^2 +2ab=c^2+2ab =c^2+2520} \\ \Rightarrow c^2-252c+ 126^2 =c^2+2520 \Rightarrow 252c = 13356 \Rightarrow \color{blue}{c=53} \Rightarrow   a+b=126-53=73 \\ \Rightarrow ab= a(73-a)=1260 \Rightarrow a^2-73a+1260=0 \Rightarrow (a-45)(a-28)=0 \\\Rightarrow \cases{(a,b)=(28,45)\\ (a,b)=(45,28)不合,違反b\gt a} \Rightarrow \cases{ b-a=45-28=17\ne 15\\ c-b=53-45=8  \\ c-a= 53-28=  25\\ a+b+c=周長=126\ne 120}\\,故選\bbox[red,2pt]{(BCD)}
解答(D)\times:令\cases{g(x)=2/|x|\\ f(x)=1/|x|},滿足 g(x)\gt f(x) \;\forall x\ne 0,但\cases{\lim_{x\to 0} f(x)= \infty\\ \lim_{x\to 0} g(x)= \infty}\\\qquad,因此\lim_{x\to 0} f(x)\not \lt \lim_{x\to 0} g(x) \\(E)\times: 令\cases{g(x)=2/x\\ f(x)=x} \Rightarrow \lim_{x\to 0}(f(x)\times g(x)) = \lim_{x\to 0}2=2,但\lim_{x\to 0} g(x)不存在\\其餘皆正確,故選\bbox[red,2pt]{(ABC)}
解答a=\sqrt 2+b 代入2ab+ 2\sqrt 2c^2+1=0 \Rightarrow 2(\sqrt 2+b)b+ 2\sqrt 2c^2+1=0 \\ \Rightarrow 2b^2 +2\sqrt 2b+ 2\sqrt 2c^2+1=0 有實數解\Rightarrow (2\sqrt 2)^2-4\cdot 2\cdot (2c^2+1)\ge 0 \Rightarrow 16c^2\le 0 \Rightarrow c=0\\ \Rightarrow  2b^2 +2\sqrt 2b+1=0 \Rightarrow b=-{\sqrt 2\over 2} \Rightarrow a= \sqrt 2-{\sqrt 2\over 2}={\sqrt 2\over 2} \Rightarrow \cases{a=\sqrt 2/2\\ b=-\sqrt 2/2\\ c=0\\ a+b+c=0},故選\bbox[red,2pt]{(BCE)}

====================== END ======================

解題僅供參考,其他教甄歷年試題及詳解

2 則留言:

  1. 感謝老師的詳解,獲益良多
    但發現一點小筆誤,第15題最後答案應該是(4,4)、(6,5)、(5,6)

    回覆刪除