Loading [MathJax]/jax/output/CommonHTML/jax.js

2023年7月8日 星期六

112年金門高中教甄-數學詳解

國立金門高中 112 學年度第一次教師甄選數學科試題卷

一、填充題 (每題 6 分,共 60 分)


解答a{B(0,0)A(a,0)C(0,a)P(x,y){¯PA2=18=(x+a)2+y2(1)¯PB2=9=x2+y2(2)¯PC2=36=x2+(ya)2(3)(2)(1)(3){2ax+a2=92ay+a2=27{2ax=9a22ay=a2274a2x2+4a2y2=(9a2)2+(a227)24a2(x2+y2)=2a472a2+81036a2=2a472a2+810a454a2+405=0(a29)(a245)=0a2=45(a=3¯AC=32<¯PC,)
解答1(S1):{A:1B:12(S2):{A:2B:1P(S1S1)=P(ABA)+P(ABA)=12×12+12×1=34P(S1S2)=134=14P(S2S2)=P(ABA)=1×12=12P(S2S1)=12A=[3/41/21/41/2]=[1211][1/4001][1/32/31/31/3]limnAn=[1211][0001][1/32/31/31/3]=[2/32/31/31/3][2/32/31/31/3][10]=[2/31/3]limnPn=23
解答{E1:x2y+4z=d1E:x+y+z=0{E1u=(1,2,4)Ev=(1,1,1)cosθ=uv|u||v|=17sinθ=67d(L1,L2)sinθ=6d(L1,L2)=7

解答{O(0,0)A(2,0)B(cosθ,sinθ){¯OA=2¯AB=(cosθ2)2+sin2θ=54cosθ{OAB=12¯OA¯OBsinθ=sinθABC=34¯AB2=5433cosθOACB=543+(sinθ3cosθ)=543+12+(3)2=543+2
解答Px=(y2)25P(a25,a+2)P¯OP (a25)2+(a+2)2f(a)=(a25)2+(a+2)2=a49a2+4a+29f(a)=4a318a+4f(a)=12a218f(a)=02a39a+2=0(a2)(2a2+4a1)=0a=2,1±62{f(2)>0f(1+6/2)<0f(16/2)>0{f(2)=17f(16/2)=
解答f(x)={x22x+1x2+32x1/3x2+3x+10x1/3x22x+1x0minf(x)=f(1/3)=23
解答:A,B,C,D,EA:AAAA=3/35=1/34P(1)=1=C51134P(2)=2=C52134P(3)=3=C53134P(4)=4=C54134()=1344k=1C5k=1027=1+()EX=1027+(11027)(EX+1)1027EX=1EX=2710
解答A=[1302]=[1301][1002][1301]=PDP1An=PDnP1{A20=[1301][100220][1301]=[1322030220]A10=[1301][100210][1301]=[1321030210]b20b10=3220332103=22012101=(210+1)(2101)2101=210+1=1025
解答2022111=(2000+22)111=111n=0C111n2000n22111n=22111+111n=1C111n2000n22111n111n=1C111n2000n22111n10000202211122111mod10022111{22122mod10022284mod10022348mod10022456mod10022532mod10022604mod10022604mod1002211122111=(226)1822341848(4)3(52)4352=332828mod10046=212=40964mod100
解答f(x)=limn2x2n+1+ax2+bx12x2n+3=limnx2n+1+ax2/2+bx/21/2x2n+3/2=limnx+(ax2/2+bx/21/2)/x2n1+(3/2)/x2n={x|x|>1ax2/3+bx/31/3|x|<1{limx1+f(x)=limx1+x=1limx1f(x)=limx1(ax2+bx1)/3=(a+b1)/3f(1)=limn2+a+b12+3=a+b+15a+b+15=1=a+b13a+b=4{limx1+f(x)=limx1+(ax2+bx1)/3=(ab1)/3limx1f(x)=limx1x=1f(1)=2+ab12+3=ab35=1=ab13ab=2{a+b=4ab=2{a=1b=3(a,b)=(1,3)

解答{A(0,0,0)B(2,0,0)P(0,0,2)BAC=θ{F(1,0,1)C(2cos2θ,2cosθsinθ)=(cos2θ+1,sin2θ,0)PC=(cos2θ+1,sin2θ,2)L=PC:xcos2θ+1=ysin2θ=z22E((cos2θ+1)t,sin2θt,2t+2),tR¯AE¯PC((cos2θ+1)t,sin2θt,2t+2)(cos2θ+1,sin2θ,2)=0t(cos2θ+1)2+tsin22θ+4t4=0t=2cos2θ+3E(2cos2θ+2cos2θ+3,2sin2θcos2θ+3,2cos2θ+2cos2θ+3){u=AFv=AEAEF=12|u|2|v|2(uv)2=2sin2θcos2θ+3f(θ)=sin2θcos2θ+3f(θ)=6cos2θ+2(cos2θ+3)2=0{cos2θ=1/3sin2θ=22/3AEF=222/31/3+3=43×38=12
2. 設x 為有理數,將(x+1)(x2) 的小數第一位予以「四捨五入」後所得的整數為 1+5x ,則x的值為多少?

解答1+5x=nNx=n15(x+1)(x2)1+5x1+5x0.5(x+1)(x2)<1+5x+0.55x+0.5x2x2<5x+1.511.5(x3)2<12.511.5(n153)2<12.511.5125(n16)2<12.5287.5(n16)2<312.5n16=±17{n=33n=1{x=(331)/5=32/5x=(11)/5=2/5x=32525
解答(1){160=8100,76,=12,100,76,8,0=46=(542+302+382+462)2/4>12(2)(2)μσσmσ2x+nσ2ym+nmin{σx,σy}
解答

============================ END =============================

解題僅供參考,其他教甄試題及詳解

沒有留言:

張貼留言