Processing math: 71%

2023年10月8日 星期日

109年公費留考-微積分詳解

教育部109年公費留學考試試題

科目:微積分

解答


(a)f(x)=ln(x)xf(x)=1ln(x)x2f(x)=2ln(x)3x3f(x)=0x=ef(e)=1e3<0f(e)=1ef(x)=0x=e3/2{limx(e3/2)+f(x)>0limx(e3/2)f(x)<0x=e3/2{local extreme value: f(e)=1/epoint of inflection: x=e3/2asymptote: x=0(b)ex=1+x+x22!+x33!+>0ex>1+xeπ/e1>1+(πe1)=πeeπ/ee>πeeπ/e>π(eπ/e)e>πeeπ>πe(c)f(x)=x1/xf(x)=x1/x(1lnx)x2f(x)=x1/xx4(13x+2xln(x)+(ln(x))22ln(x))f(x)=0x=ef(e)<0f(e)L=x1/xlnL=lnxxlimxlnL=limxlnxx=0limxx1/x=e0=1f(x){fx(1,e)fx(e,){f(x)(1,e1/e),x(1,e)f(x)(1,e1/e),x(e,)a(1,e)b(e,)使a1/a=b1/b
解答

{DrPQO¯PO=aOPQ=θ¯PQ=a2R2tanθ=¯OQ¯PQ=¯DB¯DPRa2R2=ra+Rr=R(a+R)a2R2=13πr2(a+R)=13πR2(a+R)3a2R2f(a)=(a+R)3a2R2f(a)=3(a2R2)(a+R)22a(a+R)3(a2R2)2f(a)=0(a+R)2(3a23R22a22aR)=0(a3R)(a+R)3=0a=3R=13πR2(4R)39R2R2=83πR3
解答: 0<x1


解答: f(a,b)=π/20(ax+bsinx)2dx=π/20(a2x2+2abx2axsinx+b22bsinx+sin2x)dx=124a2π3+12b2π+14π+14abπ22a2b{fa=(aπ3+3bπ224)/12fb=aπ2/4+bπ2{fa=0fb=0{a=24(π4)/π3b=8(π3)/π2
解答
{2y=xx2+4y2=4A(2,2/2)Dyxdxdy=20x/20yxdydx+22(4x2)/4)0yxdydx=20[12xy2]|x/20dx+22[12xy2]|(4x2)/40dx=2018xdx+2212x18xdx=[116x2]|20+[12lnx116x2]|22=18+14ln218=14ln2
解答: 請參考\href{https://www.gregschool.org/newtons-laws/2017/10/27/gravitational-force-exerted-by-a-sphere-geml5}{Greg School}
解答: 令f(n)={1\over \sqrt 1}+ {1\over \sqrt 2}+ \cdots +{1\over \sqrt n} \\先用歸納法證明:f(n) \ge \sqrt n\\ n=1 \Rightarrow {1\over \sqrt{1}} =\sqrt 1  \Rightarrow 原式成立\\ 假設n=k時,原式亦成立,即f(k) \ge \sqrt k\\ 當n=k+1時,f(k+1)\ge \sqrt k +{1\over \sqrt{k+1}}  ={\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \ge{\sqrt k \cdot \sqrt{k}+1 \over \sqrt{k+1}} =\sqrt{k+1} \\ \Rightarrow f(k+1) \ge \sqrt{k+1},原式亦成立\\再用歸納法證明: f(n)\le 2\sqrt n\\n=1時顯然成立,並假設n=k時原式成立,即f(k)\le 2\sqrt k\\ n=k+1時,f(k+1) \le 2\sqrt k+{1\over \sqrt{k+1}} \\= {2\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \le {2\sqrt{k^2+k+1/4}+1\over \sqrt{k+1}} ={2(k+1/2)+1\over \sqrt{k+1}} =2\sqrt{k+1} \\ \Rightarrow f(k+1) \le 2\sqrt{k+1},原式亦成立\\ 因此{ 2\sqrt n\over n^p}\ge{f(n) \over n^p}  \ge {\sqrt n\over n^p}  \Rightarrow 2n^{1/2-p}\ge {f(n) \over n^p}\ge n^{1/2-p}\\ \Rightarrow 取\bbox[red, 2pt]{p={1\over 2}}\Rightarrow 2\ge \lim_{n\to \infty}{f(n) \over n^p} \ge 1\Rightarrow   \lim_{n\to \infty}{f(n) \over n^p} \text{ is finite and nonzero}

========================= END ==========================

解答僅供參考

沒有留言:

張貼留言