教育部109年公費留學考試試題
科目:微積分
解答:(a)圖形如上,f(x)=ln(x)x⇒f′(x)=1−ln(x)x2⇒f″(x)=2ln(x)−3x3若f′(x)=0⇒x=e⇒f″(e)=−1e3<0⇒f(e)=1e為相對極大值若f″(x)=0⇒x=e3/2⇒{limx→(e3/2)+f″(x)>0limx→(e3/2)−f″(x)<0⇒x=e3/2為反曲點因此{local extreme value: f(e)=1/epoint of inflection: x=e3/2asymptote: x=0(b)泰勒展開式:ex=1+x+x22!+x33!+⋯>0⇒ex>1+x⇒eπ/e−1>1+(πe−1)=πe⇒eπ/ee>πe⇒eπ/e>π⇒(eπ/e)e>πe⇒eπ>πe(c)f(x)=x1/x⇒f′(x)=x1/x(1−lnx)x2⇒f″(x)=x1/xx4(1−3x+2xln(x)+(ln(x))2−2ln(x))若f′(x)=0⇒x=e⇒f″(e)<0⇒f(e)為極大值L=x1/x⇒lnL=lnxx⇒limx→∞lnL=limx→∞lnxx=0⇒limx→∞x1/x=e0=1f(x)為連續且可微,又{f為嚴格遞增,x∈(1,e)f為嚴格遞減,x∈(e,∞)且{f(x)∈(1,e1/e),x∈(1,e)f(x)∈(1,e1/e),x∈(e,∞)因此對任意a∈(1,e)存在唯一b∈(e,∞)使得a1/a=b1/b,故得證
假設{直圓錐底面圓心為D直圓錐底面圓半徑為r直圓錐頂點PQ為直圓錐與圓球切點球心O¯PO=a∠OPQ=θ如上圖則¯PQ=√a2−R2且tanθ=¯OQ¯PQ=¯DB¯DP⇒R√a2−R2=ra+R⇒r=R(a+R)√a2−R2⇒直圓錐體積=13πr2⋅(a+R)=13π⋅R2(a+R)3a2−R2令f(a)=(a+R)3a2−R2⇒f′(a)=3(a2−R2)(a+R)2−2a(a+R)3(a2−R2)2若f′(a)=0⇒(a+R)2(3a2−3R2−2a2−2aR)=0⇒(a−3R)(a+R)3=0⇒a=3R⇒直圓錐體積=13π⋅R2(4R)39R2−R2=83πR3
解答: 題目有疑義,若0<x≤1,則表面積為無窮大
解答: 令f(a,b)=∫π/20(ax+b−sinx)2dx=∫π/20(a2x2+2abx−2axsinx+b2−2bsinx+sin2x)dx=124a2π3+12b2π+14π+14abπ2−2a−2b⇒{fa=(aπ3+3bπ2−24)/12fb=aπ2/4+bπ−2若{fa=0fb=0⇒{a=−24(π−4)/π3b=8(π−3)/π2
解答:
解答: 令f(a,b)=∫π/20(ax+b−sinx)2dx=∫π/20(a2x2+2abx−2axsinx+b2−2bsinx+sin2x)dx=124a2π3+12b2π+14π+14abπ2−2a−2b⇒{fa=(aπ3+3bπ2−24)/12fb=aπ2/4+bπ−2若{fa=0fb=0⇒{a=−24(π−4)/π3b=8(π−3)/π2
解答:
兩圖形{2y=xx2+4y2=4在第一象限的交點A(√2,√2/2)因此∬Dyxdxdy=∫√20∫x/20yxdydx+∫2√2∫√(4−x2)/4)0yxdydx=∫√20[12xy2]|x/20dx+∫2√2[12xy2]|√(4−x2)/40dx=∫√2018xdx+∫2√212x−18xdx=[116x2]|√20+[12lnx−116x2]|2√2=18+14ln2−18=14ln2
解答: 請參考\href{https://www.gregschool.org/newtons-laws/2017/10/27/gravitational-force-exerted-by-a-sphere-geml5}{Greg School}
解答: 令f(n)={1\over \sqrt 1}+ {1\over \sqrt 2}+ \cdots +{1\over \sqrt n} \\先用歸納法證明:f(n) \ge \sqrt n\\ n=1 \Rightarrow {1\over \sqrt{1}} =\sqrt 1 \Rightarrow 原式成立\\ 假設n=k時,原式亦成立,即f(k) \ge \sqrt k\\ 當n=k+1時,f(k+1)\ge \sqrt k +{1\over \sqrt{k+1}} ={\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \ge{\sqrt k \cdot \sqrt{k}+1 \over \sqrt{k+1}} =\sqrt{k+1} \\ \Rightarrow f(k+1) \ge \sqrt{k+1},原式亦成立\\再用歸納法證明: f(n)\le 2\sqrt n\\n=1時顯然成立,並假設n=k時原式成立,即f(k)\le 2\sqrt k\\ n=k+1時,f(k+1) \le 2\sqrt k+{1\over \sqrt{k+1}} \\= {2\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \le {2\sqrt{k^2+k+1/4}+1\over \sqrt{k+1}} ={2(k+1/2)+1\over \sqrt{k+1}} =2\sqrt{k+1} \\ \Rightarrow f(k+1) \le 2\sqrt{k+1},原式亦成立\\ 因此{ 2\sqrt n\over n^p}\ge{f(n) \over n^p} \ge {\sqrt n\over n^p} \Rightarrow 2n^{1/2-p}\ge {f(n) \over n^p}\ge n^{1/2-p}\\ \Rightarrow 取\bbox[red, 2pt]{p={1\over 2}}\Rightarrow 2\ge \lim_{n\to \infty}{f(n) \over n^p} \ge 1\Rightarrow \lim_{n\to \infty}{f(n) \over n^p} \text{ is finite and nonzero}
解答: 請參考\href{https://www.gregschool.org/newtons-laws/2017/10/27/gravitational-force-exerted-by-a-sphere-geml5}{Greg School}
解答: 令f(n)={1\over \sqrt 1}+ {1\over \sqrt 2}+ \cdots +{1\over \sqrt n} \\先用歸納法證明:f(n) \ge \sqrt n\\ n=1 \Rightarrow {1\over \sqrt{1}} =\sqrt 1 \Rightarrow 原式成立\\ 假設n=k時,原式亦成立,即f(k) \ge \sqrt k\\ 當n=k+1時,f(k+1)\ge \sqrt k +{1\over \sqrt{k+1}} ={\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \ge{\sqrt k \cdot \sqrt{k}+1 \over \sqrt{k+1}} =\sqrt{k+1} \\ \Rightarrow f(k+1) \ge \sqrt{k+1},原式亦成立\\再用歸納法證明: f(n)\le 2\sqrt n\\n=1時顯然成立,並假設n=k時原式成立,即f(k)\le 2\sqrt k\\ n=k+1時,f(k+1) \le 2\sqrt k+{1\over \sqrt{k+1}} \\= {2\sqrt k \cdot \sqrt{k+1}+1 \over \sqrt{k+1}} \le {2\sqrt{k^2+k+1/4}+1\over \sqrt{k+1}} ={2(k+1/2)+1\over \sqrt{k+1}} =2\sqrt{k+1} \\ \Rightarrow f(k+1) \le 2\sqrt{k+1},原式亦成立\\ 因此{ 2\sqrt n\over n^p}\ge{f(n) \over n^p} \ge {\sqrt n\over n^p} \Rightarrow 2n^{1/2-p}\ge {f(n) \over n^p}\ge n^{1/2-p}\\ \Rightarrow 取\bbox[red, 2pt]{p={1\over 2}}\Rightarrow 2\ge \lim_{n\to \infty}{f(n) \over n^p} \ge 1\Rightarrow \lim_{n\to \infty}{f(n) \over n^p} \text{ is finite and nonzero}
========================= END ==========================
解答僅供參考
沒有留言:
張貼留言