Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年10月14日 星期六

112年雲科大碩士班-工程數學(2)詳解

國立雲林科技大學112學年度碩士班招生考試

系所: 電子系
科目: 工程數學(2)

解答: (a)xy+3y=2xy+3xy=2I(x)=e3xdx=x3x3y+3x2y=2x3(x3y)=2x3x3y=2x3dx=12x4+Cy=12x+Cx3,C(b)y+5y+6y=0λ2+5λ+6=0(λ+3)(λ+2)=0λ=2,3y=c1e2x+c2e3x,c1,c2(c)y=xmy=mxm1y=m(m1)xm2m(m1)xm+1.5mxm0.5xm=0(m2+0.5m0.5)xm=0(m0.5)(m+1)xm=0(m0.5)(m+1)=0m=0.5,1y=c1x0.5+c2x1y=c1x+c2x,c1,c2
解答: {P(x,y)=3x2y+6xy+y2/2Q(x,y)=3x2+y{Py=3x2+6x+yQx=6xPyQxQ=1I(x)=e(PyQx)/Qdx=e1dx=ex{I(x)P(x,y)=(3x2y+6xy+y2/2)exI(x)Q(x,y)=(3x2+y)exy(I(x)P(x,y))=y(I(x)Q(x,y))=(3x2+6x+y)exΦ(x,y)=I(x)P(x,y)dx+ϕ(y)=I(x)Q(x,y)dy+ρ(x){(3x2y+6xy+y2/2)exdx=3x2yex+12y2ex(3x2+y)exdy=3x2yex+12y2exϕ(y)=ρ(x)=c3x2yex+12y2ex+C=0
解答: :y+2y+y=0λ2+2λ+1=0(λ+1)2=0yh=c1ex+c2xex,yp{y1=exy2=xexr(x)=xex{y1=exy2=exxexW(y1,y2)=y1y2y1y2=e2xyp=y1y2rW+y2dxy1rWdx=exx2dx+xexxdx=16x3exy=yh+ypy=c1ex+c2xex+16x3ex,c1c2
解答: (a)f(t)=(t+2)2=t2+4t+4L{f(t)}=L{t2}+4L{t}+4L{1}=2s3+4s2+4s(b)L1{F(S)}=3L1{1S+3}+3L1{SS2+(5)2}=3e3t+3cos(5t)
解答: (a)T([x1x2x3x4])=[x1x2x3x4][2021]=2x1+2x3+x4u=[u1u2u3u4],v=[v1v2v3v4],au+bv=[au1+bv1au2+bv2au3+bv3au4+bv4]T(au+bv)=2(au1+bv1)+2(au3+bv3)+au4+bv4aT(u)+bT(v)=a(2u1+2u3+u4)+b(2v1+2v3+v4)=2(au1+bv1)+2(au3+bv3)+au4+bv4=T(au+bv)T(au+bv)=aT(u)+bT(v)Tis linear transformation(b)[2021][x1x2x3x4]=2x1+2x3+x4=T(x)A=[2021](c)kernel of A={(x1,x2,x3,x4)2x1+2x3+x4=0,x1,x2,x3,x4R}
解答: det
解答: \mathbf{(a)}\; \det(A-\lambda I)=(\lambda-0.6)(\lambda-1)=0 \Rightarrow \lambda_1=0.6,\lambda_2=1\\ \lambda_1=0.6 \Rightarrow (A-\lambda_1 I)\mathbf x=0 \Rightarrow x_1+{3\over 2}x_2=0, 取 v_1 =\begin{pmatrix}-3/2 \\1\end{pmatrix} \\ \lambda_2=1  \Rightarrow (A-\lambda_1 I)\mathbf x=0 \Rightarrow x_1+{1\over 2}x_2=0,取v_2=\begin{pmatrix}-1/2 \\1\end{pmatrix}\\ 因此D=\begin{bmatrix} \lambda_1 & 0 \\0 &\lambda_2 \end{bmatrix}\Rightarrow \bbox[red, 2pt]{D=\begin{bmatrix} 0.6 & 0 \\0 &1 \end{bmatrix}}, P=[v_1|v_2] \Rightarrow \bbox[red, 2pt]{P=\begin{bmatrix} -3/2 & -1/2 \\1 &1 \end{bmatrix}} \\\mathbf{(b)}\; \lim_{n\to \infty}A^n =\lim_{n\to \infty}(PDP^{-1})^n =\lim_{n\to \infty}PD^nP^{-1} =P\begin{bmatrix} 0 & 0 \\0 &1 \end{bmatrix}P^{-1} \\=\begin{bmatrix} -3/2 & -1/2 \\1 &1 \end{bmatrix}\begin{bmatrix} 0 & 0 \\0 &1 \end{bmatrix}\begin{bmatrix} -1 & -1/2 \\1& 3/2 \end{bmatrix}= \bbox[red,2pt]{\begin{bmatrix} -1/2 & -3/4 \\1& 3/2 \end{bmatrix}} \\ \mathbf{(c)}\;A^{-1}的特徵值={1\over \lambda_1},{1\over \lambda_2} =\bbox[red, 2pt]{{5\over 3},1}

============ END =================

解題僅供參考

沒有留言:

張貼留言