國立暨南國際大學112學年度碩士班入學考試
科目: 工程數學(線性代數、微分方程)
適用:電機系
解答:$$\mathbf{(a)}\; L\{f(t)\} =F(s)=\int_0^\infty f(t)e^{-st}\,dt \\\qquad f(t)=L^{-1}\{F(s)\} \iff F(s)=L\{f(t)\}\\\mathbf{(b)} \;F(s)=\int_0^\infty f(t)e^{-st}\,dt \Rightarrow {d\over ds}F(s) =\int_0^\infty -tf(t)e^{-st}\,dt =-L\{tf(t)\}\\ \qquad \Rightarrow L\{tf(t)\} =-{d\over ds}F(s) \\ \mathbf{(c)}\; L\{t\cos(kt)\} =-{d\over ds}L\{\cos (kt)\} =-{d\over ds}{s\over s^2+k^2}={s^2-k^2\over (s^2+k^2)^2}\\ \quad L\{t\sin(kt)\} =-{d\over ds}L\{\sin(kt)\}=-{d\over ds}{k\over s^2+k^2} ={2ks\over (s^2+k^2)^2} \\\mathbf{(d)}\;L\{y''\}+16L\{y\} =L\{\cos(4t)\} \Rightarrow s^2Y(s)-sy(0)-y'(0)+16Y(s) ={s\over s^2+16}\\ \Rightarrow Y(s)(s^2+16)-1 ={s\over s^2+16} \Rightarrow Y(s)={s\over (s^2+16)^2}+{1\over s^2+16}\\ \Rightarrow y(t)=L^{-1}\{{s\over (s^2+16)^2}\} +L^{-1}\{{1\over s^2+16}\}\\= L^{-1}\{{1\over 64}\cdot {4\over s^2+4^2}-{1\over 16}\cdot{s^2-4^2\over (s^2+16)^2}\} +L^{-1}\{{1\over 4}\cdot {4\over s^2+4^2}\}\\={1\over 64}\sin(4t)-{1\over 16}t\cos(4t)+ {1\over 4}\sin(4t) ={17\over 64}\sin(4t)-{1\over 16}t\cos(4t) \\ \Rightarrow \bbox[red, 2pt]{y(t)={17\over 64}\sin(4t)-{1\over 16}t\cos(4t) } $$
================= END ========================
沒有留言:
張貼留言