Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2023年10月23日 星期一

112年海洋大學碩士班-微積分詳解

 國立臺灣海洋大學112學年度碩士班考試入學招生考試

考試科目:微積分
學系組名稱:運輸科學系碩士班不分組

解答:y=xx2=1+2x2y1=2x2x=2y1+2y=g(x)=2x1+2
解答:y=4x2,2,124π=2π=2π2(2)=π2
解答:f=2yy+cosx{fx=2ysinx(y+cosx)2fy=2y+cosx2y(y+cosx)2=2cosx(y+cosx)2{fx=2ysinx(y+cosx)2fy=2cosx(y+cosx)2
解答:30dx(x1)2/3=10dx(x1)2/3+31dx(x1)2/3=3(32+1)
解答:{u=xdv=exdx{du=dxv=exxexdx=xex+exdx=xexex+C40xexdx=[xexex]|40=14e4e4=15e4
解答:xey+yex=xey+xyey+yex+yex=1(xey+ex)y=1eyyexy=dydx=1eyyeyxey+ex
解答:(1)L=(1+1n)nlnL=nln(1+1n)=lnn+1n1nlim
解答:\mathbf{(a)}\;f(x)={x^2+4\over 2x} ={x\over 2}+{2\over x}\Rightarrow \bbox[red, 2pt]{\cases{\text{domain of }f=\{x\in \mathbb R,x\ne 0\}\\ 漸近線:\cases{y=x/2\\ x=0}}} \\ \mathbf{(b)}\; f'(x)={(x-2)(x+2)\over 2x^2} =0 \Rightarrow x=\pm 2 \Rightarrow \cases{f(2)=2\\ f(-2)=-2} \Rightarrow \text{critical points: }\bbox[red, 2pt]{(2,2),(-2,-2)}\\ f''(x)={4\over x^3} \ne 0 \Rightarrow \text{inflection points:}\bbox[red,2pt]{none}\\ \mathbf{(c)}\; f'(x)={(x-2)(x+2)\over 2x^2} \Rightarrow y=f(x) \text{ is}\bbox[red, 2pt]{\cases{\text{increasing, }x\in [2, \infty)\cup (-\infty, -2]\\\text{decreasing, }, x\in [-2,0)\cup (0,2]}} \\\mathbf{(d)}\; \cases{f''(2)= 1/2 \gt 0\\ f''(-2)=-1/2 \lt 0} \Rightarrow \bbox[red, 2pt]{\cases{f(2)=2為極小值\\ f(-2)=-2為極大值}} \\ \mathbf{(e)}\; f''(x)={4\over x^3} \Rightarrow \begin{cases} f''(x)\gt 0 & x\gt 0\\ f''(x)\lt 0 & x\lt 0\end{cases} \Rightarrow \bbox[red, 2pt]{\cases{f\text{ is concave up, if }x\gt 0\\f \text{ is concave down, if }x\lt 0}}\\ \mathbf{(f)}圖形如下


=========== END ==============
解題僅供參考

沒有留言:

張貼留言