Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2023年12月5日 星期二

112年台北科大自動化科技-工程數學詳解

 國立 臺北科技 大學 l12學 年度碩 士班 招 生考試

系所組別 :1501、 1502自 動化科技研究所
第一節 工程數學 試題

解答:
(1){v1,v2,v3},av1+bv2+cv3=0,,a,b,c0T(av1+bv2+cv3)=aT(v1)+bT(v2)+cT(v3)=T(0)=0,0a,b,c使aT(v1)+bT(v2)+cT(v3)=0,{T(v1),T(v2),T(v3)}True(2)A=[1221][1001][1/32/32/31/3]=[1001]A,1False(3)A1+B1=B1+A1=B1AA1+B1BA1=B1(A+B)A1(A1+B1)1=(B1(A+B)A1)1=A(A+B)1BTrue(4)acos(x)+bsin(x)=0,xR{x=0a=0x=π/2b=0cos(x),sin(x)False(5) Ax=b[100010001110][x1x2x3]=[1234]{x1=1x2=2x3=3x1+x2=4 A4×3,rank(A)3,,False



解答:
(1)A=[41+i1i4]det(A)=162=14det(AλI)=λ28λ+14=0λ=4±2λ1=42(Aλ1I)v=0[21+i1i2][x1x2]=02x1+(1+i)2x2=0v=[(1+i)2k/2k],k=1v1=[(1+i)2/21]λ2=4+2(Aλ2I)v=0[21+i1i2][x1x2]=02x1=(1+i)2x2v=[(1+i)2k/2k],k=1v2=[(1+i)2/21]{A:42,4+2[(1+i)2/21],[(1+i)2/21]det(A)=14(2)B=eABeλiλiABe42,e4+2BA,[(1+i)2/21],[(1+i)2/21]det(B)=det(eA)=etr(A)=e8


解答:λ4+11λ3+36λ2+16λ64=0(λ1)(λ+4)3=0λ=1,4yh=c1ex+e4x(c2+c3x+c4x2)yp=Ax3e4x+Bcos(2x)+Csin(2x)yp=3Ax2e4x4Ax3e4x2Bsin(2x)+2Ccos(2x)yp

解答:\cases{x'=x-5y\\ y'=-3x-7y} \Rightarrow \cases{L\{x'\} =L\{x\}-5L\{y\} \\ L\{y'\} =-3L\{x\}-7L\{y\}} \Rightarrow \cases{sX(s)-2=X(s)-5Y(s)\\ sY(s)-2=-3X(s)-7Y(s)} \\ \Rightarrow \cases{(s-1)X(s)=2-5Y(s) \\ (s+7)Y(s)=2-3X(s)} \Rightarrow \cases{(s-1)X(s)=2-5{2-3X(s)\over s+7} =2-{10-15X(s)\over s+7}\\ (s+7)Y(s)=2-3{2-5Y(s)\over s-1} =2-{6-15Y(s)\over s-1}} \\ \Rightarrow \cases{X(s)={2(s+7)\over s^2+6s-22}-{10\over s^2+6s-22}=2\cdot {s+3\over (s+3)^2-31}-2 \cdot {1\over (s+3)^2-31}\\ Y(s)= {2(s-1)\over s^2+6s-22}-{6\over s^2+6s-22}=2\cdot {s+3 \over (s+3)^2-31}-14\cdot {1\over (s+3)^2-31}} \\ \Rightarrow \cases{x(t)=L^{-1}\{X(s)\} \\ y(t)= L^{-1}\{Y(s)\}} \Rightarrow \bbox[red,2pt]{\cases{x(t) =2e^{-3t} \cosh(\sqrt{31} t)-2 e^{-3t} \sinh(\sqrt{31}t) \\ y(t)=2e^{-3t} \cosh( \sqrt{31} t)-14 e^{-3t} \sinh(\sqrt{31} t)} }

======================END========================

解題僅供參考

沒有留言:

張貼留言