解答:(1)L{f(t)}=L{te4t}+L{e2tsin(t)}=1(s−4)2+1(s−2)2+1(2)f(t)=L−1{e−2ss(s−1)}=L−1{e−2s(1s−1−1s)}=u(t−2)L−1{1s−1−1s}(t−2)=u(t−2)(et−2−u(t−2))=u(t−2)(et−2−1)(3)F(s)=L{∫t0sinτcos(t−τ)dτ}=L{sint}⋅L{cost}=1s2+1⋅ss2+1=2(s2+1)2
解答:L{y″}−L{y′}=L{ttcost}⇒s2Y(s)−sy(0)−y′(0)−(sY(s)−y(0))=s−1(s−1)2+1⇒(s2−s)Y(s)=s−1(s−1)2+1⇒Y(s)=1s((s−1)2+1)⇒y(t)=L−1{1s((s−1)2+1)}=L−1{12s−12⋅s−1(s−1)2+1+12⋅1(s−1)2+1}⇒y(t)=12−12etcost+12etsint
解答:y=xm⇒y′=mxm−1⇒y″=m(m−1)xm−2⇒2x2y″+5xy′+y=2m(m−1)xm+5mxm+xm=(2m2+3m+1)xm=0⇒(2m+1)(m+1)xm=0⇒m=−1,−1/2⇒yh=c1x−1+c2x−1/2yp=ax2+bx+c⇒y′p=2ax+b⇒y″p=2a⇒2x2y″p+5xy′p+yp=15ax2+6bx+c=x2−x⇒{15a=16b=−1c=0⇒{a=1/15b=−1/6c=0⇒yp=115x2−16x⇒y=yh+yp⇒y=c1x+c2√x+115x2−16x
解答:
解答:A=[122−136501212]−R1+R3→R3,−3R1+R2→R2→[122−100−1300−13]−R2+R3→R3→[122−100−130000]2R2+R1→R1,−R2→R2→[1205001−30000]⇒rank(A)=2⇒the bases for the row space of A:{(1,2,0,5),(0,0,1,−3)},and for the column space of A:{(131),(251)}
解答:A=[11−1−132011010]−R1+R3→R3,−3R1+R2→R2→[11−1−10−1340−121]−R2+R3→R3→[11−1−10−13400−1−3]R2+R1→R1,3R3+R2→R2→[10−2−30−10−500−1−3]−2R3+R1→R1→[10030−10−500−1−3]−R2→R2,−R3→R3→[100301050013]⇒basis for row space of A:{→a1,→a2,→a3}, where {→a1=(1,0,0,3)→a2=(0,1,0,5)→a3=(0,0,1,3)Gram-Schmidt process: →u1=→a1⇒→e1=→u1‖→u1‖=1√10(1,0,0,3)→u2=→a2−(→a2⋅→e1)→e1=(0,1,0,5)−15√10⋅1√10(1,0,0,3)=(−32,1,0,12)⇒→e2=→u2‖→u2‖=1√14(−3,2,0,1)→u3=→a3−(→a3⋅→e1)→e1−(→a3⋅→e2)→e2=(0,0,1,3)−9√10⋅1√10(1,0,0,3)−3√14⋅1√14(−3,2,0,1)=(−935,−37,1,335)⇒→e3=→u3‖→u3‖=12√385(−9,−15,35,5)⇒orthogonal basis: {→e1,→e2,→e3}, where {→e1=1√10(1,0,0,3)→e2=1√14(−3,2,0,1)→e3=12√385(−9,−15,35,5)
解答:{X=[1−1−11]Y=[1−1]Z=[−2]⇒{X2=[2−2−22]YX+ZY=0Z2=[4]⇒{X4=[8−8−88]Z4=[16]⇒{X8=[128−128−128128]Z4=[256]因此A=[X0YZ]⇒A2=[X200Z2]⇒A4=[X400Z4]⇒A8=[X800Z8] =[128−1280−128128000256]
======================== END ======================
解題僅供參考
沒有留言:
張貼留言