Loading [MathJax]/jax/output/CommonHTML/jax.js

2023年12月10日 星期日

112年雲科大電機系碩士班-工程數學詳解



解答:(1)y=5sin3xy=5sin(3x)dx=53cos(3x)+cy=53cos(3x)+c(2)y+y=e5xintegrating factor I(x)=exyex+yex=e6x(yex)=e6xyex=e6x=16e6x+cy=16e5x+cex(3)u=x+y+3u=1+yu1=u21u2+1du=dxtan1u=x+cu=x+y+3=tan(x+c)y=tan(x+c)x3
解答:(1)L{f(t)}=L{te4t}+L{e2tsin(t)}=1(s4)2+1(s2)2+1(2)f(t)=L1{e2ss(s1)}=L1{e2s(1s11s)}=u(t2)L1{1s11s}(t2)=u(t2)(et2u(t2))=u(t2)(et21)(3)F(s)=L{t0sinτcos(tτ)dτ}=L{sint}L{cost}=1s2+1ss2+1=2(s2+1)2
解答:L{y}L{y}=L{ttcost}s2Y(s)sy(0)y(0)(sY(s)y(0))=s1(s1)2+1(s2s)Y(s)=s1(s1)2+1Y(s)=1s((s1)2+1)y(t)=L1{1s((s1)2+1)}=L1{12s12s1(s1)2+1+121(s1)2+1}y(t)=1212etcost+12etsint
解答:y=xmy=mxm1y=m(m1)xm22x2y+5xy+y=2m(m1)xm+5mxm+xm=(2m2+3m+1)xm=0(2m+1)(m+1)xm=0m=1,1/2yh=c1x1+c2x1/2yp=ax2+bx+cyp=2ax+byp=2a2x2yp+5xyp+yp=15ax2+6bx+c=x2x{15a=16b=1c=0{a=1/15b=1/6c=0yp=115x216xy=yh+ypy=c1x+c2x+115x216x
解答:
解答:A=[122136501212]R1+R3R3,3R1+R2R2[122100130013]R2+R3R3[122100130000]2R2+R1R1,R2R2[120500130000]rank(A)=2the bases for the row space of A:{(1,2,0,5),(0,0,1,3)},and for the column space of A:{(131),(251)}
解答:A=[111132011010]R1+R3R3,3R1+R2R2[111101340121]R2+R3R3[111101340013]R2+R1R1,3R3+R2R2[102301050013]2R3+R1R1[100301050013]R2R2,R3R3[100301050013]basis for row space of A:{a1,a2,a3}, where {a1=(1,0,0,3)a2=(0,1,0,5)a3=(0,0,1,3)Gram-Schmidt process: u1=a1e1=u1u1=110(1,0,0,3)u2=a2(a2e1)e1=(0,1,0,5)1510110(1,0,0,3)=(32,1,0,12)e2=u2u2=114(3,2,0,1)u3=a3(a3e1)e1(a3e2)e2=(0,0,1,3)910110(1,0,0,3)314114(3,2,0,1)=(935,37,1,335)e3=u3u3=12385(9,15,35,5)orthogonal basis: {e1,e2,e3}, where {e1=110(1,0,0,3)e2=114(3,2,0,1)e3=12385(9,15,35,5)
解答:{X=[1111]Y=[11]Z=[2]{X2=[2222]YX+ZY=0Z2=[4]{X4=[8888]Z4=[16]{X8=[128128128128]Z4=[256]A=[X0YZ]A2=[X200Z2]A4=[X400Z4]A8=[X800Z8] =[1281280128128000256]
======================== END ======================
解題僅供參考


沒有留言:

張貼留言