假設 beta function B(p,q)=∫10tp−1(1−t)q−1dt,則B(p,q)=Γ(p)Γ(q)Γ(p+q),其中gamma function Γ(x)=∫∞0tx−1e−tdt.證明: 取t=x2,則dt=2xdx⇒Γ(p)=∫∞0tp−1e−tdt=∫∞0x2p−2e−x2⋅2xdx=2∫∞0x2p−1e−x2dx⇒Γ(q)=2∫∞0y2q−1e−y2dy⇒Γ(p)Γ(q)=4∫∞0∫∞0x2p−1y2q−1e−(x2+y2)dxdy取{x=rcosθy=rsinθ⇒Γ(p)Γ(q)=4∫π/20∫∞0r2p+2q−1e−r2cos2p−1θsin2q−1drdθ=(2∫∞0r2(p+q)−1e−r2dr)(2∫π/20cos2p−1θsin2q−1dθ)=Γ(p+q)(2∫π/20cos2p−1θsin2q−1dθ)取t=sin2θ⇒dt=2sinθcosθdθ⇒{sinθ=√tcosθ=√1−t⇒2∫π/20cos2p−1θsin2q−1dθ=2∫10(1−t)p−1/2tq−1/2⋅dt2t1/2(1−t)1/2=∫10(1−t)p−1tq−1dt=B(p,q)因此Γ(p)Γ(q)=Γ(p+q)B(p,q)⇒B(p,q)=Γ(p)Γ(q)Γ(p+q),故得證
沒有留言:
張貼留言