解答:y′=1+y2⇒11+y2dy=dx⇒tan−1y=x+c⇒y=tan(x+c),故選(A)
解答:(ex+y+yey)dx+(xey−1)dy=0⇒{P=ex+y+yeyQ=xey−1⇒{Py=ex+y+ey+yeyQx=ey⇒NotExactButPy−QxP=ex+y+yeyex+y+yey=1⇒Non−Exact,故選(C)
解答:u=elny=y⇒uydx+u(2x+4)dy=y2dx+(2xy+4y)dy=0⇒{P=y2Q=2xy+4y⇒{Py=2yQx=2y⇒Py=Qx⇒elny為積分因子,故選(A)
解答:y″+y=0⇒λ2+1=0⇒λ=±i⇒y=c1cosx+c2sinx⇒y′=−c1sinx+c2cosx⇒{y(0)=c1=3y′(0)=c2=−0.5≠0.5⇒y=3cosx−0.5sinx⇒{y(π/2)=−0.5y(−π)=−3,故選(B)
解答:(a)Wronskians: W(x)=|pqrp′q′r′p″q″r″|=|1e−2xcosxe−2xsinx0−2e−2xcosx−e−2xsinx−2e−2xsinx+e−2xcosx03e−2xcosx+4e−2xsinx−4e−2xcosx+3e−2xsinx|=5e−4x(b)W(x)≠0,∃x∈R⇒linearly independent
解答:
(a)d5ydx5+2d3ydx3+dydx=0⇒λ5+2λ3+λ=0⇒λ(λ2+1)2=0⇒λ=0,±i⇒y=c1+c2cosx+c3sinx+c4xcosx+c5xsinx(b)y″+9y=0⇒y=c1cos(3x)+c2sin(3x)令{y1=cos(3x)y2=sin(3x)⇒W=|y1y2y′1y′2|=3⇒yp=−y1∫y2rWdx+y2∫y1rWdx,r(x)=csc(3x)⇒yp=−cos(3x)∫13dx+sin(3x)∫cos(3x)3sin(3x)dx=−13xcos(3x)+19sin(3x)ln(sin(3x))⇒y=yh+yp⇒y=c1cos(3x)+c2sin(3x)−13xcos(3x)+19sin(3x)ln(sin(3x))(c)v=y2⇒v′=2yy′⇒y′=v′2y⇒v′2y+y=−xy⇒v′+2v=−2x⇒積分因子=e2x⇒v′e2x+2ve2x=−2xe2x⇒(ve2x)′=−2xe2x⇒ve2x=−2∫xe2xdx=−xe2x+12e2x+c1⇒v=y2=−x+12+c1e−2x⇒y=±√−x+12+c1e−2x
=========================== END ==============================
解題僅供參考
沒有留言:
張貼留言