2023年12月9日 星期六

112年高科大碩士班-微分方程詳解



解答ye0.2x=ex/5yex/5,(C),y125ex/5+c1x2+c2x+c3y=25ex/5+2c1x+c2y=5xx/5+2c1y=xx/5,(C)
解答y=1+y211+y2dy=dxtan1y=x+cy=tan(x+c),(A)
解答(ex+y+yey)dx+(xey1)dy=0{P=ex+y+yeyQ=xey1{Py=ex+y+ey+yeyQx=eyNotExactButPyQxP=ex+y+yeyex+y+yey=1NonExact(C)
解答u=elny=yuydx+u(2x+4)dy=y2dx+(2xy+4y)dy=0{P=y2Q=2xy+4y{Py=2yQx=2yPy=Qxelny(A)
解答y+y=0λ2+1=0λ=±iy=c1cosx+c2sinxy=c1sinx+c2cosx{y(0)=c1=3y(0)=c2=0.50.5y=3cosx0.5sinx{y(π/2)=0.5y(π)=3(B)
解答(a)Wronskians: W(x)=|pqrpqrpqr|=|1e2xcosxe2xsinx02e2xcosxe2xsinx2e2xsinx+e2xcosx03e2xcosx+4e2xsinx4e2xcosx+3e2xsinx|=5e4x(b)W(x)0,xRlinearly independent
解答
(a)d5ydx5+2d3ydx3+dydx=0λ5+2λ3+λ=0λ(λ2+1)2=0λ=0,±iy=c1+c2cosx+c3sinx+c4xcosx+c5xsinx(b)y+9y=0y=c1cos(3x)+c2sin(3x){y1=cos(3x)y2=sin(3x)W=|y1y2y1y2|=3yp=y1y2rWdx+y2y1rWdx,r(x)=csc(3x)yp=cos(3x)13dx+sin(3x)cos(3x)3sin(3x)dx=13xcos(3x)+19sin(3x)ln(sin(3x))y=yh+ypy=c1cos(3x)+c2sin(3x)13xcos(3x)+19sin(3x)ln(sin(3x))(c)v=y2v=2yyy=v2yv2y+y=xyv+2v=2x=e2xve2x+2ve2x=2xe2x(ve2x)=2xe2xve2x=2xe2xdx=xe2x+12e2x+c1v=y2=x+12+c1e2xy=±x+12+c1e2x
 


=========================== END ==============================
解題僅供參考

沒有留言:

張貼留言