Processing math: 60%

2023年12月26日 星期二

112年成大水利碩士班-工程數學詳解

國立成功大學112學年度碩士班招生考試

系所:水利及海洋工程學系
科目:工程數學

解答:y+4πy+4π2y=0λ2+4πλ+4π2=0(λ+2π)2=0λ=2πy(x)=c1e2πx+c2xe2πx,c1c2

解答:,y2y=0λ22λ=0λ(λ2)=0λ=0,2yh=c1+c2e2x
解答:A=[353046001]det(AλI)=(3λ)(4λ)(1λ)=0λ=1,3,4λ1=1(Aλ1I)v=0[253036000][x1x2x3]=0{2x1=7x3x2+2x3=0v=[7k/22kk],kR,v1=[7/221]λ2=3(Aλ2I)v=0[053016002][x1x2x3]=0{x2=0x3=0v=[k00],kR,v2=[100]λ3=4(Aλ3I)v=0[153006003][x1x2x3]=0{x1=5x2x3=0v=[5kk0],kR,v3=[510]1,3,4,[7/221],[100],[510]
解答:L\{y''\}+5 L\{y'\}+6L\{y\} =L\{u(t-1)\} + L\{\delta(t-2)\} \\ \Rightarrow s^2Y(s)-sy(0)-y'(0)+5(sY(s)-y(0)) +6Y(s)= {e^{-s}\over s}+ e^{-2s} \\  \Rightarrow Y(s)={1\over s^2 +5s+6} \left( {e^{-s}\over s}+ e^{-2s}+1\right) \\=e^{-s}\left({1\over 6s} -{1\over 2(s+2)}+ {1\over 3(s+3)} \right) + e^{-2s} \left({1\over s+2}-{1\over s+3} \right) +{1\over s+2}-{1\over s+3} \\ \Rightarrow y(t)=L^{-1}\{Y(s) \} \Rightarrow \bbox[red, 2pt] {y(t)= u(t-1)\left( {1\over 6}-{1\over 2}e^{-2(t-1)}+{1\over 3}e^{-3(t-1)}\right) \\ \qquad +u(t-2)\left( e^{-2(t-2})-e^{-3(t-2)} \right)+e^{-2t}-e^{-3t}}
解答:\cases{y'+z'+z=0\\ y'+2y+ 6\int_0^t z(t)\,dt =-2u(t)} \Rightarrow \cases{L\{y' \}+L\{z'\}+ L\{z\}=0\\ L\{y'\}+2 L\{y\}+ 6 L\{\int_0^t z(t)\,dt \} =-2L\{ u(t) \}}\\ \Rightarrow \cases{sY(s)+5 +sZ(s)-6+ Z(s)=0 \cdots(1)\\ sY(s)+5+ 2Y(s)+ 6Z(s)/s = -2/s \cdots(2)}\\ 由(1)可得Y(s)={1\over s}-{s+1\over s}Z(s)代入(2) \Rightarrow Z(s)={2\over s-1}+{4\over s+4} \\ \Rightarrow Y(s)={2\over s}-{4\over s-1}-{3\over s+4} \\ \Rightarrow \cases{y(t)= L^{-1}\{Y(s)\} \\ z(t)= L^{-1}\{Z(s)\}} \Rightarrow \bbox[red, 2pt]{\cases{y(t) =-4e^t-3 e^{-4t}+2u(t)\\ z(t)=2e^t+4 e^{-4t}}}
 ======================= END =======================

解題僅供參考,其他歷年試題及詳解

4 則留言: