國立成功大學112學年度碩士班招生考試
系所:水利及海洋工程學系
科目:工程數學
解答:y″+4πy′+4π2y=0⇒特徵多項式λ2+4πλ+4π2=0⇒(λ+2π)2=0⇒λ=−2π⇒y(x)=c1e−2πx+c2xe−2πx,其中c1與c2均為常數解答:A=[353046001]⇒det(A−λI)=(3−λ)(4−λ)(1−λ)=0⇒λ=1,3,4λ1=1⇒(A−λ1I)v=0⇒[253036000][x1x2x3]=0⇒{2x1=7x3x2+2x3=0⇒v=[7k/2−2kk],k∈R,取v1=[7/2−21]λ2=3⇒(A−λ2I)v=0⇒[05301600−2][x1x2x3]=0⇒{x2=0x3=0⇒v=[k00],k∈R,取v2=[100]λ3=4⇒(A−λ3I)v=0⇒[−15300600−3][x1x2x3]=0⇒{x1=5x2x3=0⇒v=[5kk0],k∈R,取v3=[510]因此特徵值為1,3,4,相對應的特徵向量為[7/2−21],[100],[510]
解答:L\{y''\}+5 L\{y'\}+6L\{y\} =L\{u(t-1)\} + L\{\delta(t-2)\} \\ \Rightarrow s^2Y(s)-sy(0)-y'(0)+5(sY(s)-y(0)) +6Y(s)= {e^{-s}\over s}+ e^{-2s} \\ \Rightarrow Y(s)={1\over s^2 +5s+6} \left( {e^{-s}\over s}+ e^{-2s}+1\right) \\=e^{-s}\left({1\over 6s} -{1\over 2(s+2)}+ {1\over 3(s+3)} \right) + e^{-2s} \left({1\over s+2}-{1\over s+3} \right) +{1\over s+2}-{1\over s+3} \\ \Rightarrow y(t)=L^{-1}\{Y(s) \} \Rightarrow \bbox[red, 2pt] {y(t)= u(t-1)\left( {1\over 6}-{1\over 2}e^{-2(t-1)}+{1\over 3}e^{-3(t-1)}\right) \\ \qquad +u(t-2)\left( e^{-2(t-2})-e^{-3(t-2)} \right)+e^{-2t}-e^{-3t}}
解答:\cases{y'+z'+z=0\\ y'+2y+ 6\int_0^t z(t)\,dt =-2u(t)} \Rightarrow \cases{L\{y' \}+L\{z'\}+ L\{z\}=0\\ L\{y'\}+2 L\{y\}+ 6 L\{\int_0^t z(t)\,dt \} =-2L\{ u(t) \}}\\ \Rightarrow \cases{sY(s)+5 +sZ(s)-6+ Z(s)=0 \cdots(1)\\ sY(s)+5+ 2Y(s)+ 6Z(s)/s = -2/s \cdots(2)}\\ 由(1)可得Y(s)={1\over s}-{s+1\over s}Z(s)代入(2) \Rightarrow Z(s)={2\over s-1}+{4\over s+4} \\ \Rightarrow Y(s)={2\over s}-{4\over s-1}-{3\over s+4} \\ \Rightarrow \cases{y(t)= L^{-1}\{Y(s)\} \\ z(t)= L^{-1}\{Z(s)\}} \Rightarrow \bbox[red, 2pt]{\cases{y(t) =-4e^t-3 e^{-4t}+2u(t)\\ z(t)=2e^t+4 e^{-4t}}}
======================= END =======================
解題僅供參考,其他歷年試題及詳解
第4,5兩題答案有誤,麻煩再勘誤一下,感謝~
回覆刪除我再算算, 有點複雜,謝謝提醒!
刪除已修訂
刪除對了,感謝!
刪除