國立成功大學112學年度碩士班招生考試試題
系所:土木工程學系
考試科目:工程數學
解答:(a)A=[1−11−1−11111]⇒det(A−λI)=−λ3+λ2+4λ−4=−(λ−1)(λ−2)(λ+2)=0⇒λ=1,2−2λ1=1⇒(A−λ1I)v=0⇒[0−11−1−21110][x1x2x3]=0⇒v=[−kkk],取v1=[−111]λ2=2⇒(A−λ2I)v=0⇒[−1−11−1−3111−1][x1x2x3]=0⇒v=[k0k],取v2=[101]λ3=−2⇒(A−λ3I)v=0⇒[3−11−111113][x1x2x3]=0⇒v=[−k−2kk],取v3=[−1−21]因此特徵值為1,2,−2相對應的特徵向量為[−111],[101],[−1−21](b)[1−11100−1−11010111001]R1+R2→R2,−R1+R3→R3→[1−111000−22110020−101]R2/2,R3/2→[1−111000−111/21/20010−1/201/2]R3+R1→R1,R3+R2→R2→[1011/201/200101/21/2010−1/201/2]−R2+R1→R1→[1001/2−1/2000101/21/2010−1/201/2]R2↔R3→[1001/2−1/20010−1/201/200101/21/2]⇒A−1=[1/2−1/20−1/201/201/21/2]解答:{x=rcosθy=rsinθ⇒Txx+Tyy=Trr+1rTr=−2⇒rTrr+Tr=−2r⇒(rTr)′=−2r⇒rTr=−r2+c1⇒Tr=−r+c1r⇒T=−12r2+c1lnr+c2⇒T(x,y)=−12(x2+y2)+c12ln(x2+y2)+c2⇒{T(0,y)=−12y2+c1lny+c2=0T(π,y)=−12(π2+y2)+c12ln(π2+y2)+c2=1T(x,0)=−12x2+c1lnx+c2=0....to be continued
解答:假設u(x,t)=X(x)T(t),則utt=uxx⇒XT″=X″T⇒T″T=X″X=k為一常數又{u(0,t)=X(0)T(t)=0u(1,t)=X(1)T(t)=0⇒X(0)=X(1)=0Case I: k=0⇒X″=0⇒X=c1x+c2⇒{X(0)=c2=0X(1)=c1+c2=0⇒X=0⇒u=0Case II:k>0,假設k=λ2,X″−λ2X=0⇒X=c1eλx+c2e−λx⇒{X(0)=c1+c2=0X(1)=c1eλ+c2e−λ=0⇒c1eλ−c1e−λ=c1eλ(1−e−2λ)=0⇒c1=0⇒c2=0⇒X=0⇒u=0Case III:k<0,假設k=−λ2⇒X″+λ2X=0⇒X=c1cos(λx)+c2sin(λx)⇒{X(0)=c1=0X(1)=c2sin(λ)=0⇒sinλ=0⇒λ=nπ⇒X=c2sin(nπx)T″+λ2T=0⇒T=c3cos(λt)+c4sin(λt)⇒un(x,t)=X(x)T(t)=c2sin(nπx)(c3cos(nπt)+c4sin(nπt))=sin(nπx)(Ancos(nπt)+Bnsin(nπt))⇒u(x,t)=∞∑n=1sin(nπx)(Ancos(nπt)+Bnsin(nπt))再由u(x,0)=0⇒∞∑n=1Ansin(nπx)=0⇒An=0⇒u(x,t)=∞∑n=1Bnsin(nπx)sin(nπt)⇒∂u∂t|t=0=∞∑n=1nπBnsin(nπx)cos(nπt)|t=0=∞∑n=1nπBnsin(nπx)=sin(πx)+2sin(3πx)⇒{B1=1/πB3=2/3πBn=0,n=2,4,5,…⇒u(x,t)=1πsin(πx)sin(πt)+23πsin(3πx)sin(3πt)
解答:f(x)=π4−x4⇒f(x)=f(−x)⇒f is even⇒bn=0,n∈Na0=12π∫π−π(π4−x4)dx=12π[π4x−15x5]|π−π=45π4an=1π∫π−π(π4−x4)cos(nx)dx=1π(−8πn4(n2π2−6)(−1)n)=8n4(6−n2π2)(−1)n⇒f(x)=45π4+∞∑n=18n4(6−n2π2)(−1)ncos(nx)=45π4+∞∑n=18n4(6−n2π2)⇒f(x)=45π4+∞∑n=18n4(6−n2π2)
解答:→F=(x,y,z)⇒curl(→F)=|→i→j→k∂∂x∂∂y∂∂zxyz|=0⇒∬Scurl(→F)⋅ds=02x+y+2z=6與座標軸交點{A(3,0,0)B(0,6,0)C(0,0,3)⇒逆時針三曲線{C1(A→C):{(3−3t,0,3t)∣0≤t≤1}C2(C→B):{(0,6t,3−3t)∣0≤t≤1}C3(B→A):{(3t,6−6t,0)∣0≤t≤1}∫C→F⋅dr=∫C1→F⋅dr+∫C2→F⋅dr+∫C3→F⋅dr=∫10(3−3t,0,3t)⋅(−3,0,3)dt+∫+01(0,6t,3−3t)⋅(0,6,−3)dt+∫10(3t,6−6t,0)⋅(3,−6,0)dt=∫10108t−54dt=0因此Stoke's定理: ∫C→F⋅dr=∬Scurl(→F)⋅ds成立,Q.E.D.
解答:(a)先求齊次解,y″+4y=0⇒λ2+4=0⇒λ=±2i⇒yh=c1cos(2x)+c2sin(2x)利用 variation of parameters 求yp,令{y1=cos(2x)y2=sin(2x)r(x)=16cos(2x)⇒W=|y1y2y′1y′2|=|cos(2x)sin(2x)−2sin(2x)′2cos(2x)′|=2yp=−y1∫y2rWdx+y2∫y1rWdx=−cos(2x)∫8sin(2x)cos(2x)dx+sin(2x)∫8cos2(2x)dx=−cos(2x)∫4sin(4x)dx+sin(2x)∫4cos(4x)+4dx=cos(2x)cos(4x)+sin(2x)sin(4x)+4xsin(2x)=cos(4x−2x)+4xsin(2x)=cos(2x)+4xsin(2x)⇒y=yh+yp=c1cos(2x)+c2sin(2x)+cos(2x)+4xsin(2x)=c3cos(2x)+c2sin(2x)+4xsin(2x)⇒y′=−2c3sin(2x)+2c2cos(2x)+4sin(2x)+8xcos(2x){y(0)=0y′(0)=0⇒{c3=02c2=0⇒y=4xsin(2x) (b)先求齊次解,y″+2y′+10y=0⇒λ2+2λ+10=0⇒λ=−1±3i⇒yh=c1e−xcos(3x)+c2e−xsin(3x)接著令yp=Acosx+Bsinx+Ccos(3x)+Dsin(3x)⇒{y′p=−Asinx+Bcosx−3Csin(3x)+3Dcos(3x)y″p=−Acosx−Bsinx−9Ccos(3x)−9Dsin(3x)⇒y″p+2y′p+10yp=(9A+2B)cosx+(−2A+9B)sinx+(C+6D)cos(3x)+(−6C+D)sin(3x)=17sinx−37sin(3x)⇒{9A+2B=0−2A+9B=17C+6D=0−6C+D=−37⇒{A=−0.4B=1.8C=6D=−1⇒yp=−0.4cosx+1.8sinx+6cos(3x)−sin(3x)⇒y=yh+yp⇒y=c1e−xcos(3x)+c2e−xsin(3x)−0.4cosx+1.8sinx+6cos(3x)−sin(3x)⇒y=c1e−xcos(3x)+c2e−xsin(3x)−0.4cosx+1.8sinx+6cos(3x)−sin(3x)⇒y′=−c1e−xcos(3x)−3c1e−xsin(3x)−c2e−xsin(3x)+3c2e−xcos(3x)+0.4sinx+1.8cosx−18sin(3x)−3cos(3x)⇒{y(0)=c1−0.4+6=6.6⇒c1=1y′(0)=−c1+3c2+1.8−3=−2.2⇒c2=0⇒y=e−xcos(3x)−0.4cosx+1.8sinx+6cos(3x)−sin(3x)
沒有留言:
張貼留言