Processing math: 100%

2023年12月21日 星期四

112年成功大學土木工程碩士班-工程數學詳解

國立成功大學112學年度碩士班招生考試試題

系所:土木工程學系
考試科目:工程數學

解答:(a)=[111111111]det(AλI)=λ3+λ2+4λ4=(λ1)(λ2)(λ+2)=0λ=1,22λ1=1(Aλ1I)v=0[011121110][x1x2x3]=0v=[kkk],v1=[111]λ2=2(Aλ2I)v=0[111131111][x1x2x3]=0v=[k0k],v2=[101]λ3=2(Aλ3I)v=0[311111113][x1x2x3]=0v=[k2kk],v3=[121]1,2,2[111],[101],[121](b)[111100111010111001]R1+R2R2,R1+R3R3[111100022110020101]R2/2,R3/2[1111000111/21/200101/201/2]R3+R1R1,R3+R2R2[1011/201/200101/21/20101/201/2]R2+R1R1[1001/21/2000101/21/20101/201/2]R2R3[1001/21/200101/201/200101/21/2]A1=[1/21/201/201/201/21/2]
解答:{x=rcosθy=rsinθxx+Tyy=Trr+1rTr=2rTrr+Tr=2r(rTr)=2rrTr=r2+c1Tr=r+c1rT=12r2+c1lnr+c2T(x,y)=12(x2+y2)+c12ln(x2+y2)+c2{T(0,y)=12y2+c1lny+c2=0T(π,y)=12(π2+y2)+c12ln(π2+y2)+c2=1T(x,0)=12x2+c1lnx+c2=0....to be continued
解答:u(x,t)=X(x)T(t),utt=uxxXT=XTTT=XX=k{u(0,t)=X(0)T(t)=0u(1,t)=X(1)T(t)=0X(0)=X(1)=0Case I: k=0X=0X=c1x+c2{X(0)=c2=0X(1)=c1+c2=0X=0u=0Case II:k>0,kλ2,Xλ2X=0X=c1eλx+c2eλx{X(0)=c1+c2=0X(1)=c1eλ+c2eλ=0c1eλc1eλ=c1eλ(1e2λ)=0c1=0c2=0X=0u=0Case III:k<0,k=λ2X+λ2X=0X=c1cos(λx)+c2sin(λx){X(0)=c1=0X(1)=c2sin(λ)=0sinλ=0λ=nπX=c2sin(nπx)T+λ2T=0T=c3cos(λt)+c4sin(λt)un(x,t)=X(x)T(t)=c2sin(nπx)(c3cos(nπt)+c4sin(nπt))=sin(nπx)(Ancos(nπt)+Bnsin(nπt))u(x,t)=n=1sin(nπx)(Ancos(nπt)+Bnsin(nπt))u(x,0)=0n=1Ansin(nπx)=0An=0u(x,t)=n=1Bnsin(nπx)sin(nπt)ut|t=0=n=1nπBnsin(nπx)cos(nπt)|t=0=n=1nπBnsin(nπx)=sin(πx)+2sin(3πx){B1=1/πB3=2/3πBn=0,n=2,4,5,u(x,t)=1πsin(πx)sin(πt)+23πsin(3πx)sin(3πt)
解答:f(x)=π4x4f(x)=f(x)f is evenbn=0,nNa0=12πππ(π4x4)dx=12π[π4x15x5]|ππ=45π4an=1πππ(π4x4)cos(nx)dx=1π(8πn4(n2π26)(1)n)=8n4(6n2π2)(1)nf(x)=45π4+n=18n4(6n2π2)(1)ncos(nx)=45π4+n=18n4(6n2π2)f(x)=45π4+n=18n4(6n2π2)
解答:F=(x,y,z)curl(F)=|ijkxyzxyz|=0Scurl(F)ds=02x+y+2z=6{A(3,0,0)B(0,6,0)C(0,0,3){C1(AC):{(33t,0,3t)0t1}C2(CB):{(0,6t,33t)0t1}C3(BA):{(3t,66t,0)0t1}CFdr=C1Fdr+C2Fdr+C3Fdr=10(33t,0,3t)(3,0,3)dt++01(0,6t,33t)(0,6,3)dt+10(3t,66t,0)(3,6,0)dt=10108t54dt=0Stoke's: CFdr=Scurl(F)ds,Q.E.D.
解答:(a),y+4y=0λ2+4=0λ=±2iyh=c1cos(2x)+c2sin(2x) variation of parameters yp,{y1=cos(2x)y2=sin(2x)r(x)=16cos(2x)W=|y1y2y1y2|=|cos(2x)sin(2x)2sin(2x)2cos(2x)|=2yp=y1y2rWdx+y2y1rWdx=cos(2x)8sin(2x)cos(2x)dx+sin(2x)8cos2(2x)dx=cos(2x)4sin(4x)dx+sin(2x)4cos(4x)+4dx=cos(2x)cos(4x)+sin(2x)sin(4x)+4xsin(2x)=cos(4x2x)+4xsin(2x)=cos(2x)+4xsin(2x)y=yh+yp=c1cos(2x)+c2sin(2x)+cos(2x)+4xsin(2x)=c3cos(2x)+c2sin(2x)+4xsin(2x)y=2c3sin(2x)+2c2cos(2x)+4sin(2x)+8xcos(2x){y(0)=0y(0)=0{c3=02c2=0y=4xsin(2x) (b),y+2y+10y=0λ2+2λ+10=0λ=1±3iyh=c1excos(3x)+c2exsin(3x)yp=Acosx+Bsinx+Ccos(3x)+Dsin(3x){yp=Asinx+Bcosx3Csin(3x)+3Dcos(3x)yp=AcosxBsinx9Ccos(3x)9Dsin(3x)yp+2yp+10yp=(9A+2B)cosx+(2A+9B)sinx+(C+6D)cos(3x)+(6C+D)sin(3x)=17sinx37sin(3x){9A+2B=02A+9B=17C+6D=06C+D=37{A=0.4B=1.8C=6D=1yp=0.4cosx+1.8sinx+6cos(3x)sin(3x)y=yh+ypy=c1excos(3x)+c2exsin(3x)0.4cosx+1.8sinx+6cos(3x)sin(3x)y=c1excos(3x)+c2exsin(3x)0.4cosx+1.8sinx+6cos(3x)sin(3x)y=c1excos(3x)3c1exsin(3x)c2exsin(3x)+3c2excos(3x)+0.4sinx+1.8cosx18sin(3x)3cos(3x){y(0)=c10.4+6=6.6c1=1y(0)=c1+3c2+1.83=2.2c2=0y=excos(3x)0.4cosx+1.8sinx+6cos(3x)sin(3x)
 

沒有留言:

張貼留言