Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2023年12月21日 星期四

112年成功大學土木工程碩士班-工程數學詳解

國立成功大學112學年度碩士班招生考試試題

系所:土木工程學系
考試科目:工程數學

解答:(a)=[111111111]det(AλI)=λ3+λ2+4λ4=(λ1)(λ2)(λ+2)=0λ=1,22λ1=1(Aλ1I)v=0[011121110][x1x2x3]=0v=[kkk],v1=[111]λ2=2(Aλ2I)v=0[111131111][x1x2x3]=0v=[k0k],v2=[101]λ3=2(Aλ3I)v=0[311111113][x1x2x3]=0v=[k2kk],v3=[121]1,2,2[111],[101],[121](b)[111100111010111001]R1+R2R2,R1+R3R3[111100022110020101]R2/2,R3/2[1111000111/21/200101/201/2]R3+R1R1,R3+R2R2[1011/201/200101/21/20101/201/2]R2+R1R1[1001/21/2000101/21/20101/201/2]R2R3[1001/21/200101/201/200101/21/2]A1=[1/21/201/201/201/21/2]
解答:{x=rcosθy=rsinθxx+Tyy=Trr+1rTr=2rTrr+Tr=2r(rTr)=2rrTr=r2+c1Tr=r+c1rT=12r2+c1lnr+c2T(x,y)=12(x2+y2)+c12ln(x2+y2)+c2{T(0,y)=12y2+c1lny+c2=0T(π,y)=12(π2+y2)+c12ln(π2+y2)+c2=1T(x,0)=12x2+c1lnx+c2=0....to be continued
解答:u(x,t)=X(x)T(t),utt=uxxXT
解答:f(x)=\pi^4-x^4 \Rightarrow f(x)=f(-x) \Rightarrow f\text{ is even} \Rightarrow b_n=0, n\in \mathbb N \\ a_0={1\over 2\pi} \int_{-\pi}^\pi (\pi^4-x^4)\,dx ={1\over 2\pi}  \left. \left[ \pi^4x -{1\over 5}x^5\right] \right|_{-\pi}^\pi ={4\over 5}\pi^4\\ a_n = {1\over \pi}\int_{-\pi}^\pi (\pi^4-x^4) \cos(nx)\,dx= {1\over \pi} \left(-{8 \pi\over n^4}(n^2\pi^2-6)(-1)^n \right) ={8\over n^4}(6-n^2\pi^2)(-1)^n \\ \Rightarrow f(x)={4\over 5}\pi^4+ \sum_{n=1}^\infty {8\over n^4}(6-n^2\pi^2)(-1)^n \cos(n x)={4\over 5}\pi^4+ \sum_{n=1}^\infty {8\over n^4}(6-n^2\pi^2) \\ \Rightarrow \bbox[red, 2pt]{f(x)= {4\over 5}\pi^4+ \sum_{n=1}^\infty {8\over n^4}(6-n^2\pi^2) }
解答:\vec F=(x,y,z) \Rightarrow curl (\vec F) =\begin{vmatrix}\vec i &\vec j& \vec k\\ \frac{\partial }{\partial x} &\frac{\partial }{\partial y} & \frac{\partial }{\partial z} \\ x & y & z \end{vmatrix} =0 \Rightarrow \iint_S curl(\vec F) \cdot  \,ds =0\\ 2x+y+2z=6與座標軸交點\cases{A(3,0,0) \\ B(0,6,0)\\ C(0,0,3)} \\ \Rightarrow 逆時針三曲線\cases{C_1(A\to C):\{(3-3t,0,3t) \mid 0\le t\le 1\} \\C_2(C\to B): \{(0,6t,3-3t) \mid 0\le t\le 1\} \\C_3(B\to A):\{(3t, 6-6t, 0) \mid 0\le t\le 1\} \\}\\ \int_C\vec F\cdot dr =\int_{C_1} \vec F\cdot dr + \int_{C_2} \vec F\cdot dr +\int_{C_3} \vec F\cdot dr \\=\int_0^1 (3-3t,0,3t) \cdot (-3,0,3)\,dt +\int+0^1 (0,6t,3-3t) \cdot(0,6,-3) \,dt +\int_0^1 (3t,6-6t,0) \cdot (3,-6,0)\,dt \\= \int_0^1 108t-54\,dt = 0\\ 因此 \text{Stoke's} 定理: \int_C \vec F\cdot dr = \iint_S curl(\vec F)\cdot ds 成立, \bbox[red, 2pt]{Q.E.D.}
解答:\mathbf{(a)}\; 先求齊次解,y''+4y=0 \Rightarrow \lambda^2+4=0 \Rightarrow \lambda =\pm 2i \Rightarrow y_h=c_1\cos(2x)+ c_2\sin(2x)\\ 利用\text{ variation of parameters }求y_p, 令\cases{y_1=\cos (2x)\\y_2=\sin (2x)\\ r(x)=16\cos(2x)} \Rightarrow W=\begin{vmatrix} y_1 & y_2\\ y_1' & y_2' \end{vmatrix} =\begin{vmatrix} \cos(2x) & \sin(2x)\\ -2\sin(2x)' & 2\cos(2x)' \end{vmatrix} =2\\ y_p = -y_1\int{y_2 r\over W}dx +y_2 \int{y_1r\over W}dx =-\cos(2x) \int{ 8\sin(2x)\cos(2x)}\,dx +\sin(2x) \int{8\cos^2(2x)}\,dx \\=-\cos(2x) \int 4\sin(4x)\,dx +\sin(2x) \int 4\cos(4x)+4\,dx= \cos(2x)\cos(4x)+ \sin(2x) \sin(4x)+ 4x\sin(2x)\\= \cos(4x-2x)+ 4x\sin(2x)= \cos(2x)+ 4x\sin(2x) \\ \Rightarrow y=y_h+y_p = c_1\cos(2x)+ c_2\sin(2x)+\cos(2x)+ 4x\sin(2x)=c_3\cos(2x)+ c_2\sin(2x)+ 4x\sin(2x) \\ \Rightarrow y'=-2c_3\sin(2x)+ 2c_2\cos(2x) +4\sin(2x)+ 8x\cos(2x) \\ \cases{y(0)=0\\ y'(0)=0} \Rightarrow \cases{c_3=0\\ 2c_2=0} \Rightarrow \bbox[red, 2pt]{y= 4x\sin(2x)} \mathbf{(b)}\; 先求齊次解,y''+2y'+10y=0 \Rightarrow \lambda^2+2\lambda+10=0 \Rightarrow \lambda =-1\pm 3i \\ \Rightarrow y_h=c_1e^{-x}\cos(3x) +c_2e^{-x}\sin(3x)\\接著令y_p =A\cos x+B \sin x+C\cos(3x)+ D\sin(3x) \\\Rightarrow \cases{y_p'=-A\sin x+B \cos x-3C\sin(3x)+ 3D\cos(3x) \\ y_p''= -A\cos x-B\sin x-9C\cos(3x)-9D\sin(3x)} \\ \Rightarrow y_p''+2y_p'+10y_p\\=(9A+ 2B )\cos x+( -2A+ 9B)\sin  x+(C+6D )\cos(3x)+ ( -6C+ D)\sin (3x) \\=17\sin x-37\sin(3x) \Rightarrow \cases{9A+2B=0 \\ -2A+9B=17\\ C+6D=0\\ -6C+D=-37} \Rightarrow \cases{A=-0.4\\ B=1.8\\ C=6\\ D=-1} \\ \Rightarrow y_p= -0.4\cos x+1.8\sin x+6\cos(3x)-\sin(3x) \\ \Rightarrow y=y_h+y_p \\ \Rightarrow y=c_1e^{-x}\cos(3x) +c_2e^{-x}\sin(3x) -0.4\cos x+1.8\sin x+6\cos(3x)-\sin(3x) \\ \Rightarrow y=c_1e^{-x}\cos(3x) +c_2e^{-x}\sin(3x) -0.4\cos x+1.8\sin x+6\cos(3x)-\sin(3x) \\ \Rightarrow y'=-c_1e^{-x}\cos(3x) -3c_1e^{-x} \sin(3x)-c_2e^{-x}\sin(3x) +3c_2e^{-x}\cos(3x)\\ \quad +0.4\sin x+1.8\cos x-18\sin(3x)-3\cos(3x)\\ \Rightarrow \cases{y(0)=c_1-0.4+6=6.6 \Rightarrow c_1=1\\ y'(0)= -c_1+3c_2+1.8-3=-2.2 \Rightarrow c_2=0} \\ \Rightarrow \bbox[red, 2pt]{y=e^{-x}\cos(3x) -0.4\cos x+1.8\sin x+6\cos(3x)-\sin(3x)}
 

沒有留言:

張貼留言