2023年12月16日 星期六

112年台科大機械工程碩士班甲組-工程數學詳解

 


解答:$$\mathbf{(a)}\;\left[\begin{array}{rrr|rrr}1& 2& 3& 1& 0 & 0\\ 2 & 1& 1& 0& 1& 0\\ 1& 1& 1& 0 & 0& 1 \end{array} \right] \xrightarrow{-2R_1+R_2\to R_2, -R_1+R_3\to R_3} \left[\begin{array}{rrr|rrr}1& 2& 3& 1& 0 & 0\\ 0 & -3& -5& -2& 1& 0\\ 0& -1& -2& -1 & 0& 1 \end{array} \right] \\ \xrightarrow{2R_3+R_1\to R_1,-3R_3+R_2\to R_2} \left[\begin{array}{rrr|rrr}1& 0 & -1& -1& 0 & 2\\ 0 & 0& 1& 1& 1& -3\\ 0& -1& -2& -1 & 0& 1 \end{array} \right] \xrightarrow{R_2 \leftrightarrow R_3} \left[\begin{array}{rrr|rrr}1& 0 & -1& -1& 0 & 2\\  0& -1& -2& -1 & 0& 1 \\0 & 0& 1& 1& 1& -3\end{array} \right] \\ \xrightarrow{R_3+R_1\to R_1,2R_3+R_2\to R_2} \left[\begin{array}{rrr|rrr}1& 0 & 0& 0& 1 & -1\\  0& -1& 0& 1 & 2& -5 \\0 & 0& 1& 1& 1& -3\end{array} \right] \xrightarrow{-R_2\to R_2}\left[\begin{array}{rrr|rrr}1& 0 & 0& 0& 1 & -1\\  0& 1& 0& -1 & -2& 5 \\0 & 0& 1& 1& 1& -3\end{array} \right] \\ \Rightarrow \bbox[red, 2pt]{A^{-1}= \begin{bmatrix}0 & 1& -1\\ -1& -2& 5\\ 1 & 1& -3 \end{bmatrix}} \\\mathbf{(b)}\; \mathbf{(a)}\; A= \begin{bmatrix}1 & 2& 3\\ 2& 1& 1\\ 1 & 1& 1 \end{bmatrix} \xrightarrow {R_2-\bbox[cyan,2pt]{2}R_1\to R_2} \begin{bmatrix}1 & 2& 3\\ 0& -3& -5\\ 1 & 1& 1 \end{bmatrix} \xrightarrow {R_3-\bbox[cyan,2pt]{1}R_1\to R_3} \begin{bmatrix}1 & 2& 3\\ 0& -3& -5\\ 0 & -1& -2 \end{bmatrix} \\ \xrightarrow{R_3-\bbox[cyan ,2pt]{1\over 3}R_2\to R_3} \begin{bmatrix}1 & 2& 3\\ 0& -3& -5\\ 0 & 0& -1/3 \end{bmatrix} \Rightarrow A= LU= \begin{bmatrix}1 & 0& 0\\ \bbox[cyan, 2pt]2& 1 & 0\\ \bbox[cyan, 2pt]1 & \bbox[cyan, 2pt]{1/3}& 1 \end{bmatrix} \begin{bmatrix}1 & 2& 3\\ 0& -3& -5\\ 0 & 0& -1/3 \end{bmatrix} $$

解答:$$$$



解答:$$u=y' \Rightarrow u'-3u=8e^{3x}+4 \Rightarrow \text{integration factor }I(x)=e^{\int -3\,dx} =e^{-3x}\\ \Rightarrow u'e^{-3x}-3e^{-3x}u=8+4e^{-3x} \Rightarrow (e^{-3x}u)'=8+4e^{-3x} \Rightarrow e^{-3x}u =8x -{4\over 3}e^{-3x}+c_1 \\ \Rightarrow u=y'=8xe^{3x}-{4\over 3}+c_1e^{3x} \Rightarrow y={8\over 3}xe^{3x}-{8\over 9}e^{3x}-{4\over 3}x+ {1\over 3}c_1e^{3x}+c_2 \\ \Rightarrow \bbox[red, 2pt]{y= {8\over 3}xe^{3x}-{4\over 3}x+c_3e^{3x} +c_2}$$
解答:$$\cases{u(x,y,z)=2x^2+3y^2+z^2 \Rightarrow \nabla u=(u_x,u_y,u_z) =(4x,6y,2z) \\ v=\vec i-2\vec k =(1,0,-2) \Rightarrow {\vec v\over \Vert \vec v\Vert} ={1\over \sqrt 5}(1,0,-2)} \\ \Rightarrow D_{\vec v}u(2,1,3) =\nabla u(2,1,3)\cdot {\vec v\over \Vert \vec v\Vert} =(8,6,6) \cdot {1\over \sqrt 5}(1,0,-2)= \bbox[red, 2pt]{-{4\over \sqrt 5}}$$

解答:$$\mathbf{(a)}\;\vec r(\theta,\phi)=(2\cos \phi \sin \theta,2\sin \phi \sin \theta,  2\cos \theta)  \Rightarrow \vec n= \vec r_\theta \times \vec r_\phi \\= (4\sin^2 \theta \cos \phi,4\sin^2\theta \sin \phi, 4\sin \theta \cos \theta)  \Rightarrow \iint_S (\vec F\cdot \vec n)dA \\= \int_{\theta=0}^\pi \int_{\phi=0}^{2\pi} (14\sin \theta \cos \phi,0,-2\cos\theta) \cdot (4\sin^2 \theta \cos \phi,4\sin^2\theta \sin \phi, 4\sin \theta \cos \theta) d\theta \\=\int_{\theta=0}^\pi \int_{\phi=0}^{2\pi} 56\cos^2\phi \sin^2\theta-8\cos^2\theta \sin \theta\,d\phi d\theta =\bbox[red, 2pt]{64\pi}\\ \mathbf{(b)}\;\vec F=7x\vec i-z\vec k \Rightarrow div \vec F=F_x+F_y+ F_z=7+0-1=6 \\ \Rightarrow \iint_S (\vec F\cdot \vec n)dA = \iiint_R div \vec F\,dV=\iiint_R6\,dV = 6\cdot {4\over 3}\pi \cdot 2^3= \bbox[red,2pt]{64\pi}$$

解答:

$$令 u( x,t) =F( x) G( t),則 \begin{cases} u_{tt} =FG''\\u_{xx} =F''G \end{cases},代回原式可得 FG''=c^{2} F''G \Rightarrow \frac{G''}{c^{2} G} =\frac{F''}{F}\\由於 \frac{G''}{c^{2} G} 只含變數 t ,而 \frac{F''}{F} 只含變數 x ,兩者等值代表同為一常數 k ,即\frac{G''}{c^{2} G} =\frac{F''}{F} =k\\則邊界條件:\cases{u(0,t) = F(0)G(t)=0\\ u(L,t)=F(L)G(t)=0},若G(t)=0,則u(x,t)=0為明顯解,不列入討論\\因此邊界條件轉變成F(0)=F(L)=0;\\F''-kF=0 \Rightarrow F=c_1e^{\sqrt kx}+ c_2e^{-\sqrt k x} ,代入初始值\Rightarrow \cases{F(0)=c_1+c_2=0 \cdots(1)\\ F(L)= c_1e^{\sqrt kL}+ c_2e^{-\sqrt k L} =0 \cdots(2)}\\ 由(1)得c_2=-c_1代入(2) \Rightarrow c_1(e^{\sqrt kL}-e^{-\sqrt k L})=0 \Rightarrow c_1=0或e^{\sqrt kL}=e^{-\sqrt k L}\\ 若c_1=0 \Rightarrow c_2=0 \Rightarrow F=0為明顯解,不列入討論;因此只需考慮e^{\sqrt kL}=e^{-\sqrt k L}\\ 而e^{\sqrt kL}\ne e^{-\sqrt k L},\forall k\gt 0;若k=0 \Rightarrow F=0為明顯解,不列入討論\\ 因此只有k\lt 0,此時F(x)= c_1(e^{i\sqrt{|k|}x}-e^{-i\sqrt{|k|}x}) =2ic_1 \sin (\sqrt{|k|}x) \\ \Rightarrow F(L)=2ic_1 \sin (\sqrt{|k|}L) =0 \Rightarrow \sqrt{|k|}L=n\pi,n\in \mathbb N \Rightarrow \sqrt{|k|}=n\pi /L \\ \Rightarrow F(x)=2ic_1 \sin (n\pi x/L) =A \sin\left({n\pi \over L}x\right),A為常數\\ k=-{n^2\pi^2 \over L^2} \Rightarrow G''+{n^2\pi^2 \over L^2}c^2G=0 \Rightarrow G(t)=c_3 \cos\left({n\pi \over L}ct\right) +c_4\sin \left({n\pi \over L}ct\right)\\因此u(x,t)=A \sin\left({n\pi \over L}x\right)\left( c_3 \cos\left({n\pi \over L}ct\right) +c_4\sin \left({n\pi \over L}ct\right)\right) \\=\sum_{n=1}^\infty \sin\left({n\pi \over L}x\right)\left( A_n \cos\left({n\pi \over L}ct\right) +B_n\sin \left({n\pi \over L}ct\right)\right)$$
$$初始條件1: u(x,0)=f(x) \Rightarrow f(x)=\sum_{n=1}^\infty A_n \sin({n\pi \over L}x) \\\Rightarrow \int_0^L f(x)\sin({k\pi \over L}x)\;dx = \sum_{n=1}^\infty \int_0^L A_n\sin({k\pi \over L}x)\sin({n\pi \over L}x)\;dx =\int_0^L A_k \sin^2 ({k\pi \over L}x)\;dx ={L\over 2}A_k\\ \Rightarrow A_k={2\over L}\int_0^L f(x)\sin({k\pi \over L}x)\;dx \Rightarrow A_n={2\over L}\int_0^L f(x)\sin({n\pi \over L}x)\;dx\\ ={2\over L}\left(\int_0^{L/2} {2k\over L} x\sin ({n\pi \over L}x)\,dx +\int_{L/2}^L {2k\over L}(L-x)\sin ({n\pi\over L}x)\,dx\right) \\\Rightarrow \bbox[cyan,2pt]{A_n ={8k \over n\pi}\left( {1\over n\pi}\sin({n\pi \over 2}) -\cos ({n\pi \over 2})+ \cos(n\pi)\right)}$$

$$初始條件2: \left. {\partial u\over \partial t}\right|_{t=0} =0  \Rightarrow  \sum_{n=1}^\infty \left( -{cn\pi \over L}A_n \sin({cn\pi \over L}t) +{cn\pi \over L}B_n\cos ({cn\pi \over L}t) \right)\sin({n\pi \over L}x)|_{t=0} \\ =\sum_{n=1}^\infty {cn\pi \over L}B_n\sin({n\pi \over L}x) =0 \Rightarrow B_n=0\\ \Rightarrow u(x,t)=\sum_{n=1}^\infty \sin\left({n\pi \over L}x\right)\left( A_n \cos\left({n\pi \over L}ct\right) \right) \\ \Rightarrow \bbox[red, 2pt] {u(x,t) = \sum_{n=1}^\infty {8k \over n\pi}\left( {1\over n\pi}\sin({n\pi \over 2}) -\cos ({n\pi \over 2})+ \cos(n\pi)\right)\sin({n\pi \over L}x) \cos({n\pi\over L}ct)}$$

==================== END ================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言