Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2023年12月16日 星期六

112年台科大機械工程碩士班甲組-工程數學詳解

 


解答:(a)[123100211010111001]2R1+R2R2,R1+R3R3[123100035210012101]2R3+R1R1,3R3+R2R2[101102001113012101]R2R3[101102012101001113]R3+R1R1,2R3+R2R2[100011010125001113]R2R2[100011010125001113]A1=[011125113](b)(a)A=[123211111]R22R1R2[123035111]R31R1R3[123035012]R313R2R3[123035001/3]A=LU=[10021011/31][123035001/3]

解答:



解答:u=yu3u=8e3x+4integration factor I(x)=e3dx=e3xue3x3e3xu=8+4e3x(e3xu)=8+4e3xe3xu=8x43e3x+c1u=y=8xe3x43+c1e3xy=83xe3x89e3x43x+13c1e3x+c2y=83xe3x43x+c3e3x+c2
解答:{u(x,y,z)=2x2+3y2+z2u=(ux,uy,uz)=(4x,6y,2z)v=i2k=(1,0,2)vv=15(1,0,2)Dvu(2,1,3)=u(2,1,3)vv=(8,6,6)15(1,0,2)=45

解答:(a)r(θ,ϕ)=(2cosϕsinθ,2sinϕsinθ,2cosθ)n=rθ×rϕ=(4sin2θcosϕ,4sin2θsinϕ,4sinθcosθ)

解答:

令 u( x,t) =F( x) G( t),則 \begin{cases} u_{tt} =FG''\\u_{xx} =F''G \end{cases},代回原式可得 FG''=c^{2} F''G \Rightarrow \frac{G''}{c^{2} G} =\frac{F''}{F}\\由於 \frac{G''}{c^{2} G} 只含變數 t ,而 \frac{F''}{F} 只含變數 x ,兩者等值代表同為一常數 k ,即\frac{G''}{c^{2} G} =\frac{F''}{F} =k\\則邊界條件:\cases{u(0,t) = F(0)G(t)=0\\ u(L,t)=F(L)G(t)=0},若G(t)=0,則u(x,t)=0為明顯解,不列入討論\\因此邊界條件轉變成F(0)=F(L)=0;\\F''-kF=0 \Rightarrow F=c_1e^{\sqrt kx}+ c_2e^{-\sqrt k x} ,代入初始值\Rightarrow \cases{F(0)=c_1+c_2=0 \cdots(1)\\ F(L)= c_1e^{\sqrt kL}+ c_2e^{-\sqrt k L} =0 \cdots(2)}\\ 由(1)得c_2=-c_1代入(2) \Rightarrow c_1(e^{\sqrt kL}-e^{-\sqrt k L})=0 \Rightarrow c_1=0或e^{\sqrt kL}=e^{-\sqrt k L}\\ 若c_1=0 \Rightarrow c_2=0 \Rightarrow F=0為明顯解,不列入討論;因此只需考慮e^{\sqrt kL}=e^{-\sqrt k L}\\ 而e^{\sqrt kL}\ne e^{-\sqrt k L},\forall k\gt 0;若k=0 \Rightarrow F=0為明顯解,不列入討論\\ 因此只有k\lt 0,此時F(x)= c_1(e^{i\sqrt{|k|}x}-e^{-i\sqrt{|k|}x}) =2ic_1 \sin (\sqrt{|k|}x) \\ \Rightarrow F(L)=2ic_1 \sin (\sqrt{|k|}L) =0 \Rightarrow \sqrt{|k|}L=n\pi,n\in \mathbb N \Rightarrow \sqrt{|k|}=n\pi /L \\ \Rightarrow F(x)=2ic_1 \sin (n\pi x/L) =A \sin\left({n\pi \over L}x\right),A為常數\\ k=-{n^2\pi^2 \over L^2} \Rightarrow G''+{n^2\pi^2 \over L^2}c^2G=0 \Rightarrow G(t)=c_3 \cos\left({n\pi \over L}ct\right) +c_4\sin \left({n\pi \over L}ct\right)\\因此u(x,t)=A \sin\left({n\pi \over L}x\right)\left( c_3 \cos\left({n\pi \over L}ct\right) +c_4\sin \left({n\pi \over L}ct\right)\right) \\=\sum_{n=1}^\infty \sin\left({n\pi \over L}x\right)\left( A_n \cos\left({n\pi \over L}ct\right) +B_n\sin \left({n\pi \over L}ct\right)\right)
初始條件1: u(x,0)=f(x) \Rightarrow f(x)=\sum_{n=1}^\infty A_n \sin({n\pi \over L}x) \\\Rightarrow \int_0^L f(x)\sin({k\pi \over L}x)\;dx = \sum_{n=1}^\infty \int_0^L A_n\sin({k\pi \over L}x)\sin({n\pi \over L}x)\;dx =\int_0^L A_k \sin^2 ({k\pi \over L}x)\;dx ={L\over 2}A_k\\ \Rightarrow A_k={2\over L}\int_0^L f(x)\sin({k\pi \over L}x)\;dx \Rightarrow A_n={2\over L}\int_0^L f(x)\sin({n\pi \over L}x)\;dx\\ ={2\over L}\left(\int_0^{L/2} {2k\over L} x\sin ({n\pi \over L}x)\,dx +\int_{L/2}^L {2k\over L}(L-x)\sin ({n\pi\over L}x)\,dx\right) \\\Rightarrow \bbox[cyan,2pt]{A_n ={8k \over n\pi}\left( {1\over n\pi}\sin({n\pi \over 2}) -\cos ({n\pi \over 2})+ \cos(n\pi)\right)}

初始條件2: \left. {\partial u\over \partial t}\right|_{t=0} =0  \Rightarrow  \sum_{n=1}^\infty \left( -{cn\pi \over L}A_n \sin({cn\pi \over L}t) +{cn\pi \over L}B_n\cos ({cn\pi \over L}t) \right)\sin({n\pi \over L}x)|_{t=0} \\ =\sum_{n=1}^\infty {cn\pi \over L}B_n\sin({n\pi \over L}x) =0 \Rightarrow B_n=0\\ \Rightarrow u(x,t)=\sum_{n=1}^\infty \sin\left({n\pi \over L}x\right)\left( A_n \cos\left({n\pi \over L}ct\right) \right) \\ \Rightarrow \bbox[red, 2pt] {u(x,t) = \sum_{n=1}^\infty {8k \over n\pi}\left( {1\over n\pi}\sin({n\pi \over 2}) -\cos ({n\pi \over 2})+ \cos(n\pi)\right)\sin({n\pi \over L}x) \cos({n\pi\over L}ct)}

==================== END ================

解題僅供參考,其他歷年試題及詳解

沒有留言:

張貼留言