Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2024年1月13日 星期六

111年北科大機械碩士班乙組-工程數學詳解

 國立臺北科技大學111學年度碩士班招生考試

系所組別 :1120機械工程系機電整合碩士班乙組
第一節 工程數學 試題 

解答:{P(x,y)=1+2ex/yQ(x,y)=2ex/y(1xy)Py=2xy2ex/y=QxExactΦ(x,y)=(1+2ex/y)dx=2ex/y(1xy)dyΦ=x+2yex/y+ρ(y)=2yex/y+ϕ(x)Φ=x+2yex/y+c1=0
解答:{P(x,y)=4yQ(x,y)=x+12xy{Py=4Qx=1+12yPyQx Non-exactQxPyP=12y34y=334yu=(334y)u1udu=(334y)dylnu=3y34lnyu=e3yy3/4{uP=4y1/4e3yuQ=e3yy3/4(x+12xy)(uP)y=y3/4e3y+12y1/4e3y=(uQ)xExactΦ(x,y)=4y1/4e3ydx=e3yy3/4(x+12xy)dyΦ=4xy1/4e3y+ρ(y)=4xy1/4e3y+ϕ(x)4xy1/4e3y+c1=0

解答:y+y=0yh=c1cosx+c2sinx{y1=cosxy2=sinxW=|y1y2y1y2|=1yp=cosxsinx(xsinx)dx+sinxcosx(xsinx)dx=cosx(14x214xsin(2x)18cos(2x))+sinx(18sin(2x)14xcos(2x))=14x2cosx+18cos(2xx)+14xsin(2xx)=14x2cosx+18cosx+14xsinxy=yh+ypy=c3cosx+c2sinx14x2cosx+14xsinx
解答:f(t)={0,t<6t,t6f(t)=tu(t6)L{f(t)}=L{tu(t6)}=ddsL{u(t6}=dds(e6ss)=6e6ss+e6ss2L{y+4y}=s2Y(s)sy(0)y(0)+4Y(s)=(s2+4)Y(s)=6e6ss+e6ss2Y(s)=6e6ss(s2+4)+e6ss2(s2+4)y(t)=L1{Y(s)}=L1{6e6ss(s2+4)+e6ss2(s2+4)}=u(t6)(3232cos(2(t6)))+u(t6)(t6418sin(2(t6)))y(t)=u(t6)(t432cos(2t12)18sin(2t16))




解答:A=[223216120]det
解答:令u(x,t)= X(x)T(t), 則 \begin{cases}\textbf{PDE} & \frac{\partial u}{\partial t} =k \frac{\partial^2 u}{\partial x^2} \Rightarrow XT'=kX''T \\\textbf{BC} & u(0,t)=u(L,t)=0 \Rightarrow X(0)=X(L)=0 \\ \textbf{IC}& u(x,0)=A \end{cases}\\ XT'=kX''T \Rightarrow {T'\over kT}= {X''\over X}= \lambda\\ \textbf{Case I }\lambda=0.  \Rightarrow X''=0 \Rightarrow X=c_1x+ c_2 \Rightarrow \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_2=0 \\ c_1L+c_2=0} \\\qquad \Rightarrow c_1=c_2=0 \Rightarrow X=0 \\ \textbf{Cases II } \lambda\gt 0. 假設\lambda =\rho^2 (\rho \gt 0) \Rightarrow X''-\rho^2 X=0 \Rightarrow X=c_1e^{\rho x} +c_2 e^{-\rho x} \\ \qquad \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_1+c_2=0 \\ c_1e^{\rho L} + c_2 e^{-\rho L}=0} \Rightarrow c_1e^{\rho L} - c_1 e^{-\rho L}=0 \\ \qquad  \Rightarrow c_1(e^{2\rho L}-1)=0 \Rightarrow c_1=0 \Rightarrow c_2=0 \Rightarrow X=0 \\ \textbf{Cases III } \lambda\lt 0. 假設\lambda =-\rho^2 (\rho \gt 0) \Rightarrow X''+\rho^2 X=0 \Rightarrow X=c_1 \cos(\rho x) +c_2 \sin(\rho x)  \\ \qquad \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_1 =0 \\ c_1\cos(\rho L) + c_2 \sin(\rho L)=0} \Rightarrow c_2\sin(\rho L)=0\\ \qquad \Rightarrow \sin(\rho L)=0 \Rightarrow \rho = {n\pi \over L} \Rightarrow X= c_2\sin(n\pi x/L), n\in \mathbb N \\ \Rightarrow T'+\rho^2kT=0 \Rightarrow T=c_3e^{-\rho^2 kt} =c_3e^{-n^2\pi^2kt/L^2} \\\Rightarrow u(x,t)=XT= c_2c_3e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L) =\sum_{n=1}^\infty a_n e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L) \\ \textbf{IC: }u(x,0)=\sum_{n=1}^\infty a_n   \sin(n\pi x/L) =A \Rightarrow a_n={2\over L} \int_0^L A\sin(n\pi x/L)dx \\=-{2A\over n\pi} \left[ \cos(n\pi)-1\right]= {2A\over n\pi}(1-(-1)^n) \\ \Rightarrow \bbox[red, 2pt]{u(x,t)=\sum_{n=1}^\infty {2A\over n\pi}(1-(-1)^n) e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L)}
=========================== END ===========================
解題僅供參考, 其他歷年試題及詳解

沒有留言:

張貼留言