國立臺北科技大學111學年度碩士班招生考試
系所組別 :1120機械工程系機電整合碩士班乙組
第一節 工程數學 試題
解答:{P(x,y)=1+2ex/yQ(x,y)=2ex/y(1−xy)⇒Py=−2xy2ex/y=Qx⇒Exact⇒Φ(x,y)=∫(1+2ex/y)dx=∫2ex/y(1−xy)dy⇒Φ=x+2yex/y+ρ(y)=2yex/y+ϕ(x)⇒Φ=x+2yex/y+c1=0
解答:{P(x,y)=4yQ(x,y)=x+12xy⇒{Py=4Qx=1+12y⇒Py≠Qx⇒ Non-exact⇒Qx−PyP=12y−34y=3−34y⇒u′=(3−34y)u⇒1udu=(3−34y)dy⇒lnu=3y−34lny⇒u=e3yy−3/4⇒{uP=4y1/4e3yuQ=e3yy−3/4(x+12xy)⇒(uP)y=y−3/4e3y+12y1/4e3y=(uQ)x⇒Exact⇒Φ(x,y)=∫4y1/4e3ydx=∫e3yy−3/4(x+12xy)dy⇒Φ=4xy1/4e3y+ρ(y)=4xy1/4e3y+ϕ(x)⇒4xy1/4e3y+c1=0
解答:y″+y=0⇒yh=c1cosx+c2sinx令{y1=cosxy2=sinx⇒W=|y1y2y′1y′2|=1⇒yp=−cosx∫sinx(xsinx)dx+sinx∫cosx(xsinx)dx=−cosx(14x2−14xsin(2x)−18cos(2x))+sinx(18sin(2x)−14xcos(2x))=−14x2cosx+18cos(2x−x)+14xsin(2x−x)=−14x2cosx+18cosx+14xsinx⇒y=yh+yp⇒y=c3cosx+c2sinx−14x2cosx+14xsinx
解答:f(t)={0,t<6t,t≥6⇒f(t)=tu(t−6)⇒L{f(t)}=L{tu(t−6)}=−ddsL{u(t−6}=−dds(e−6ss)=6e−6ss+e−6ss2⇒L{y″+4y}=s2Y(s)−sy(0)−y′(0)+4Y(s)=(s2+4)Y(s)=6e−6ss+e−6ss2⇒Y(s)=6e−6ss(s2+4)+e−6ss2(s2+4)⇒y(t)=L−1{Y(s)}=L−1{6e−6ss(s2+4)+e−6ss2(s2+4)}=u(t−6)(32−32cos(2(t−6)))+u(t−6)(t−64−18sin(2(t−6)))⇒y(t)=u(t−6)(t4−32cos(2t−12)−18sin(2t−16))

解答:A=[−22−321−6−1−20]⇒det
解答:令u(x,t)= X(x)T(t), 則 \begin{cases}\textbf{PDE} & \frac{\partial u}{\partial t} =k \frac{\partial^2 u}{\partial x^2} \Rightarrow XT'=kX''T \\\textbf{BC} & u(0,t)=u(L,t)=0 \Rightarrow X(0)=X(L)=0 \\ \textbf{IC}& u(x,0)=A \end{cases}\\ XT'=kX''T \Rightarrow {T'\over kT}= {X''\over X}= \lambda\\ \textbf{Case I }\lambda=0. \Rightarrow X''=0 \Rightarrow X=c_1x+ c_2 \Rightarrow \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_2=0 \\ c_1L+c_2=0} \\\qquad \Rightarrow c_1=c_2=0 \Rightarrow X=0 \\ \textbf{Cases II } \lambda\gt 0. 假設\lambda =\rho^2 (\rho \gt 0) \Rightarrow X''-\rho^2 X=0 \Rightarrow X=c_1e^{\rho x} +c_2 e^{-\rho x} \\ \qquad \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_1+c_2=0 \\ c_1e^{\rho L} + c_2 e^{-\rho L}=0} \Rightarrow c_1e^{\rho L} - c_1 e^{-\rho L}=0 \\ \qquad \Rightarrow c_1(e^{2\rho L}-1)=0 \Rightarrow c_1=0 \Rightarrow c_2=0 \Rightarrow X=0 \\ \textbf{Cases III } \lambda\lt 0. 假設\lambda =-\rho^2 (\rho \gt 0) \Rightarrow X''+\rho^2 X=0 \Rightarrow X=c_1 \cos(\rho x) +c_2 \sin(\rho x) \\ \qquad \textbf{BC}:\cases{X(0)=0\\ X(L)=0} \Rightarrow \cases{c_1 =0 \\ c_1\cos(\rho L) + c_2 \sin(\rho L)=0} \Rightarrow c_2\sin(\rho L)=0\\ \qquad \Rightarrow \sin(\rho L)=0 \Rightarrow \rho = {n\pi \over L} \Rightarrow X= c_2\sin(n\pi x/L), n\in \mathbb N \\ \Rightarrow T'+\rho^2kT=0 \Rightarrow T=c_3e^{-\rho^2 kt} =c_3e^{-n^2\pi^2kt/L^2} \\\Rightarrow u(x,t)=XT= c_2c_3e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L) =\sum_{n=1}^\infty a_n e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L) \\ \textbf{IC: }u(x,0)=\sum_{n=1}^\infty a_n \sin(n\pi x/L) =A \Rightarrow a_n={2\over L} \int_0^L A\sin(n\pi x/L)dx \\=-{2A\over n\pi} \left[ \cos(n\pi)-1\right]= {2A\over n\pi}(1-(-1)^n) \\ \Rightarrow \bbox[red, 2pt]{u(x,t)=\sum_{n=1}^\infty {2A\over n\pi}(1-(-1)^n) e^{-n^2\pi^2kt/L^2} \sin(n\pi x/L)}
=========================== END ===========================
解題僅供參考, 其他歷年試題及詳解
沒有留言:
張貼留言