國立成功大學111學年度碩士班招生考試
系所:資源工程學系
科目:工程數學
解答:(a)y″+y=0⇒yh=c1cosx+c2sinxyp=Acos(2x)+Bsin(2x)⇒y′p=−2Asin(2x)+2Bcos(2x)⇒y″p=−4Acos(2x)−4Bsin(2x)⇒y″p+yp=−3Acos(2x)−3Bsin(2x)=sin(2x)⇒{A=0B=−1/3⇒yp=−13sin(2x)⇒y=yh+yp⇒y=c1cosx+c2sinx−13sin(2x)⇒y′=−c1sinx+c2cosx−23cos(2x)⇒{y(0)=c1=0y′(0)=c2−2/3=0⇒c2=23⇒y=23sinx−23sin(2x)(b)y′=y+ex⇒y′−y=ex⇒ integration factor I(x)=e∫−1dx=e−x⇒e−xy′−e−xy=1⇒(e−xy)′=1⇒e−xy=x+c1⇒y=xex+c1ex⇒y(0)=c1=2⇒y=xex+2ex解答:(a)∫∞0e3t+2e−stdt=e2∫∞0e(3−s)tdt=e2[13−se(3−s)t]|∞0=e2s−3(b)L−1{s+6s2+4s+20}=L−1{(s+2)+4(s+2)2+42}=e−2t(cos4t+sin4t)解答:(a-1)[13422−11−312311301]R2−2R1→R2,R3−R1→R3,R4−R1→R4→[13420−7−7−70−1−1−100−4−1]R1+3R3→R1,R2−7R3→R2→[101−100000−1−1−100−4−1]−R3→R3,−R4/4→R4→[101−1000001110011/4]R1−R4→R1,R2↔R3→[100−5/4011100000011/4]R2−R4→R2,R3↔R4→[100−5/40103/40011/40000](a-2)由rref(A)可知rank(A)=3(a-3)rank(A)=1−1+3+1=4(b)B=[010100001]⇒det(B−λI)=−(λ−1)2(λ+1)=0⇒eigenvalues: 1,−1λ1=1⇒(B−λ1I)v=0⇒[−1101−10000][x1x2x3]=0⇒x1=x2⇒v=x1(110)+x3(001),取v1=(110),v2=(001)λ2=−1⇒(B−λ1I)v=0⇒[110110002][x1x2x3]=0⇒{x1+x2=0x3=0⇒v=x2(−110),取v3=(−110)⇒eigenvectors: (110),(001),(−110)

解答:(a)→F(x,y,z)=(3xy2,−2yz2,4x2z)⇒div →F=∂∂x3xy2+∂∂y(−2yz2)+∂∂z4x2z=3y2−2z2+4x2⇒div →F(−1,2,3)=12−18+4=−2(b){F=x+y2+z3→v=(2,2,1)⇒{(Fx,Fy,Fz)=(1,2y,3z2)→n=→v‖→v‖=(23,23,13)⇒D→nF(x,y,z)=(1,2y,3z2)⋅(23,23,13)=23+4y3+z2⇒D→nF(3,2,−1)=23+83+1=133(c)假設C為平滑曲線所組合而成的封閉曲線,所圍區域為R,而P(x,y)及Q(x,y)為連續且一次偏導數也連續,則∮CPdx+Qdy=∬R∂Q∂x−∂P∂ydA
解答:(a)f(x)為奇函數⇒an=0,而bn=∫0−1−sin(nπx)dx+∫10sin(nπx)dx=2nπ(1−(−1)n)⇒f(x)=∞∑n=12nπ(1−(−1)n)sin(nπx)(a)f(x)=e−x,x>0⇒A(α)=∫∞0e−xcos(αx)dx=11+α2⇒f(x)=2π∫∞0cos(αx)1+α2dx(c)F(ω)=∫∞−∞e−|x|e−jωxdx=2∫∞0e−xe−jωxdx=2∫∞0e−(jω+1)xdx=2[−1jω+1e−(jω+1)x]|∞0=2jω+1========================= END =========================
解題僅供參考,其他歷年試題及詳解
沒有留言:
張貼留言