國立中山大學110學年度碩士班招生考試
科目名稱:工程數學【海下所碩士班】
解答:limx→∞lnxxa+1=limx→∞ddxlnxddxxa+1=limx→∞1/x(a+1)xa=limx→∞1(a+1)xa+1=0解答:(1) v1=u1=<3,1>⇒e1=v1|v1|=<3√10,1√10>=<3√1010,√1010>v2=u2−(u2⋅e1)e1=<1,1>−2√105<3√1010,√1010>=<−15,35>⇒e2=v2|v2|=<−√1010,3√1010>⇒ an orthonormal basis: {e1,e2}={<3√1010,√1010>,<−√1010,3√1010>}(2) v1=u1=<1,1,1>⇒e1=v1|v1|=<√33,√33,√33>v2=u2−(u2⋅e1)e1=<1,2,2>−5√33<√33,√33,√33>=<−23,13,13>⇒e2=v2|v2|=<−√63,√66,√66>v3=u3−(u3⋅e1)e1−(u3⋅e2)e2=<0,12,−12>⇒e3=v3|v3|=<0,√22,−√22>⇒ an orthonormal basis: {e1,e2,e3}={<√33,√33,√33>,<−√63,√66,√66><0,√22,−√22>}
解答:A=[22−11−10010]⇒AT=[2102−11−100]⇒{B=12(A+AT)C=12(A−AT)⇒{B=[23/2−1/23/2−11/2−1/21/20]C=[01/2−1/2−1/20−1/21/21/20]
解答:dydx+y=x⇒exdydx+yex=xex⇒(exy)′=xex⇒exy=∫xexdx=xex−ex+c1⇒y=x−1+c1ex⇒y(0)=−1+c1=3⇒c1=4⇒y=x−1+4e−x
解答:(1) L{sin(2t)}=∫∞0e−stsin(2t)dt=12i∫∞0e−st(e2ti−e−2ti)dt=12i∫∞0(e(2i−s)t−e−(2i+s)t)dt=12i[12i−se(2i−s)t+12i+se−(2i+s)t]|∞0=−12i(12i−s+12i+s)=−12i(2i+s−4−s2+2i−s−4−s2)=12i⋅4is2+4=2s2+4(2) L{dydt}+3L{y}=13L{sin(2t)}⇒sY(s)−6+3Y(s)=13⋅2s2+4⇒(s+3)Y(s)=26s2+4+6⇒Y(s)=26(s2+4)(s+3)+6s+3⇒y(t)=L−1{Y(s)}=L−1{26(s2+4)(s+3)+6s+3}=L−1{−2s+6s2+4+8s+3}⇒y(t)=−2cos(2t)+3sin(2t)+8e−3t
解答:\text{Bessel’s equation of order }ν\text{ is given by} \bbox[red, 2pt]{x^2y''+xy'+(x^2-v^2)y=0}
解答:y''x^2+(x^2-81)y=-xy' \Rightarrow y''x^2+xy'+(x^2-9^2)y=0 \text{ is a Bessel's equation of order }v=9\\ \Rightarrow \bbox[red, 2pt]{y=c_1J_9(x)+ c_2Y_9(x)}, \text{ where }J_9(x)= \sum_{n=0}^\infty {(-1)^n \over n! \Gamma(n+10)} \left({x\over 2} \right)^{2n+9},\\\qquad J_{-9}(x) =\sum_{n=0}^\infty {(-1)^n \over n! \Gamma(n-8)} \left({x\over 2} \right)^{2n-9} \text{ and }Y_9(x) =\lim_{v\to 9} {\cos v\pi J_v(x)-J_{-v}(x) \over \sin v\pi }
解答:\textbf{Case I }k=0: y''=0 \Rightarrow y=c_1x+ c_2 \Rightarrow \cases{y(0)=c_2=0 \\ y(L)=c_1L+ c_2=0} \Rightarrow \cases{c_1=0\\ c_2=0} \Rightarrow y=0\\ \textbf{Cases II }k\gt 0: y''+ky=0 \Rightarrow y=c_1 \cos(\sqrt kx) +c_2\sin(\sqrt kx) \Rightarrow y(0)=c_1=0 \\\qquad \Rightarrow y(L) =c_2 \sin(\sqrt kL) =0 \Rightarrow \sqrt kL= n\pi \Rightarrow k={n^2\pi^2 \over L^2} ,n\in \mathbb N \\ \textbf{Case III }k\lt 0: y''+ky=0 \Rightarrow y=c_1e^{\sqrt kx} +c_2e^{-\sqrt k x} \Rightarrow y(0)=c_1+c_2=0 \Rightarrow c_2=-c_1\\ \qquad \Rightarrow y=c_1e^{\sqrt k x}-c_1e^{-\sqrt k x} \Rightarrow y(L) = c_1e^{\sqrt k L}-c_1e^{-\sqrt k L} =0 \Rightarrow c_1(e^{2\sqrt kL}-1) =0 \\\qquad \Rightarrow c_1=0 \Rightarrow c_2=0 \Rightarrow y=0\\ \text{Summary, eigenfunctions: } \bbox[red, 2pt]{y_n(x) =c_n \sin({n\pi x\over L}), n\in \mathbb N}
解答:f(t)\text{ with period }2 \Rightarrow f(t)=\begin{cases}1& 0\le t\le 1\\ -1& 1\le t\le 2 \end{cases} \;\equiv f(t) =\begin{cases}1& 0\le t\le 1\\ -1& -1\le t\le 0 \end{cases} \\ \Rightarrow c_n= {1\over 2} \int_{-1}^1 f(t)e^{-i n\pi t }\,dt ={1 \over 2}\left( \int_{-1}^0 -e^{-in\pi t} \,dx+\int_0^1 e^{-i n\pi t} \,dt\right) \\= {1\over 2} \left( \left. \left[ {1\over in\pi} e^{-in \pi t} \right] \right|_{-1}^0 + \left. \left[ -{1\over in \pi }e^{-in\pi t}\right] \right|_0^1 \right) ={1\over 2}\left( {2\over in\pi} -{1\over in\pi}(e^{in\pi} +e^{-in\pi})\right) \\={1\over in\pi}(1-(-1)^n) ,n=0,\pm 1,\pm 2,\dots\Rightarrow \bbox[red, 2pt]{f(t)= \sum_{n=-\infty}^\infty {1\over in\pi}(1-(-1)^n)e^{in \pi t}}
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
第5題的(2),倒數第二行中,不是2/(s+3),要是8/(s+3),故最後答案後面應是,8e^(-3t)
回覆刪除謝謝,已修訂
刪除