Processing math: 100%

2024年12月28日 星期六

110年台科大機械碩士班-工程數學詳解

 國立臺灣科技大學110學年度碩士班招生考試

系所組別:機械工程碩士班甲組、乙組、丙組、丁組
科目名稱:工程數學 

 

解答:(a) xyy=2x21xy1x2=2(1xy)=21xy=2x+c1y=2x2+c1xy=23x3+12c1x2+c2{y(0)=c2=0y(1)=23+12c1+c2=1{c1=23c2=0y=23x3+13x2(b) y+5y+6y=0λ2+5λ+6=0λ=2,3yh=c1e2x+c2e3xyp=Axe2xyp=Ae2x2Axe2xyp=4Ae2x+4Axe2xyp+5yp+6yp=Ae2x=e2xA=1yp=xe2xy=yh+yp=c1e2x+c2e3x+xe2x{y(0)=c1+c2=0y(1)=c1e2+c2e3+e2=e3{c1=1c2=1y=e2x+e3x+xe2x

解答:f(x)=x0eτcosτdτ=[12eτ(sinτcosτ)]|x0=12ex(sinxcosx)+12L{f(x)}=12L{ex(sinxcosx)}+12L{1}=12(1(s+1)2+1s+1(s+1)2+1)+12sL{f(x)}=12(1ss(s+1)2+1)
解答:f(t)+2t0f(τ)cos(tτ)dτ=4et+sintL{f(t)}+2L{f(t)}L{cost}=4L{et}+L{sint}L{f(t)}+L{f(t)}2ss2+1=4s+1+1s2+1L{f(t)}=4(s2+1)(s+1)3+1(s+1)2f(t)=L1{4(s2+1)(s+1)3+1(s+1)2}=L1{4s+17(s+1)2+8(s+1)3}f(t)=4et7tet+4t2et
解答:A=[0213]det(AλI)=λ23λ+2=0λ=1,2p(λ)=eλ=aλ+b{p(1)=e=a+bp(2)=e2=2a+b{a=e2eb=e2+2eeλ=(e2e)λ+(e2+2e)eA=(e2e)A+(e2+2e)I=[02(e2e)(e2e)3(e2e)]+[e2+2e00e2+2e]eA=[e2+2e2e2+2ee2e2e2e]
解答:u(x,t)=v(x,t)=ax+b,where a and b are constant{u(1,t)=v(1,t)a+b=2u(1,t)=v(1,t)+a+b=4{v(1,t)=0v(1,t)=0a=1b=3u(x,t)=v(x,t)+x+3{v(x,t)t=2v(x,t)x2v(1,t)=0v(1,t)=0v(x,0)=sin(2πx)Suppose v(x,t)=X(x+1)T(t), then we have {v(1,t)=X(0)T(t)=0v(1,t)=X(2)T(t)=0 {X(0)=0X(2)=0 and X(x+1)X(x+1)=T(t)T(t)=λCase I λ=0X(x+1)=0X(x+1)=c1x+c2X(x)=c1(x1)+c2=c1x+c3{X(0)=c3=0X(2)=2c1+c3=0{c1=0c3=0X=0X(x+1)=0v=0Case II λ>0λ=ρ2X2(x+1)ρ2X(x+1)=0X(x+1)=c1eρx+c2eρxX(x)=c1eρ(x1)+c2eρ(x1)=c3eρx+c4eρx{X(0)=c3+c4=0X(2)=c3e2ρ+c4e2ρ=0c3e2ρc3e2ρ=0c3(e4ρ1)=0c3=0c4=0X=0v=0Case III λ<0λ=ρ2X2(x+1)+ρ2X(x+1)=0X(x+1)=c1cos(ρx)+c2sin(ρx)X(x)=c1cos(ρ(x1))+c2sin(ρ(x1))=c3cos(ρx)+c4sin(ρx){X(0)=c3=0X(2)=c3cos(2ρ)+c4sin(2ρ)=0sin(2ρ)=02ρ=nπρ=nπ2Xn(x)=Bnsinnπx2,nNT+ρ2T=0T=c5eρ2tTn(t)=Anen2π2t/4v(x,t)=X(x+1)T(t)=n=1Cnsinnπ(x+1)2en2π2t/4v(x,0)=n=1Cnsinnπ(x+1)2=sin(2πx){C4=1Cn=0,n4v(x,t)=sin(2π(x+1))e4π2t=sin(2πx)e4π2tu(x,t)=v(x,t)+x+3u(x,t)=sin(2πx)e4π2t+x+3

========================== END =========================

解題僅供參考,碩士班歷年試題及詳解

沒有留言:

張貼留言