國立臺灣科技大學110學年度碩士班招生考試
系所組別:機械工程碩士班甲組、乙組、丙組、丁組
科目名稱:工程數學
解答:(a) xy″−y′=2x2⇒1xy″−1x2=2⇒(1xy′)′=2⇒1xy′=2x+c1⇒y′=2x2+c1x⇒y=23x3+12c1x2+c2⇒{y(0)=c2=0y(1)=23+12c1+c2=1⇒{c1=23c2=0⇒y=23x3+13x2(b) y″+5y′+6y=0⇒λ2+5λ+6=0⇒λ=−2,−3⇒yh=c1e−2x+c2e−3xyp=Axe−2x⇒y′p=Ae−2x−2Axe−2x⇒y″p=−4Ae−2x+4Axe−2x⇒y″p+5y′p+6yp=Ae−2x=e−2x⇒A=1⇒yp=xe−2x⇒y=yh+yp=c1e−2x+c2e−3x+xe−2x⇒{y(0)=c1+c2=0y(1)=c1e−2+c2e−3+e−2=e−3⇒{c1=−1c2=1⇒y=−e−2x+e−3x+xe−2x
解答:f(x)=∫x0e−τcosτdτ=[12e−τ(sinτ−cosτ)]|x0=12e−x(sinx−cosx)+12⇒L{f(x)}=12L{e−x(sinx−cosx)}+12L{1}=12(1(s+1)2+1−s+1(s+1)2+1)+12s⇒L{f(x)}=12(1s−s(s+1)2+1)
解答:f(t)+2∫t0f(τ)cos(t−τ)dτ=4e−t+sint⇒L{f(t)}+2L{f(t)}L{cost}=4L{e−t}+L{sint}⇒L{f(t)}+L{f(t)}2ss2+1=4s+1+1s2+1⇒L{f(t)}=4(s2+1)(s+1)3+1(s+1)2⇒f(t)=L−1{4(s2+1)(s+1)3+1(s+1)2}=L−1{4s+1−7(s+1)2+8(s+1)3}⇒f(t)=4e−t−7te−t+4t2e−t
解答:A=[0−213]⇒det(A−λI)=λ2−3λ+2=0⇒λ=1,2⇒p(λ)=eλ=aλ+b⇒{p(1)=e=a+bp(2)=e2=2a+b⇒{a=e2−eb=−e2+2e⇒eλ=(e2−e)λ+(−e2+2e)⇒eA=(e2−e)A+(−e2+2e)I=[0−2(e2−e)(e2−e)3(e2−e)]+[−e2+2e00−e2+2e]⇒eA=[−e2+2e−2e2+2ee2−e2e2−e]
解答:u(x,t)=v(x,t)=ax+b,where a and b are constant⇒{u(−1,t)=v(−1,t)−a+b=2u(1,t)=v(1,t)+a+b=4⇒{v(−1,t)=0v(1,t)=0a=1b=3⇒u(x,t)=v(x,t)+x+3⇒{∂v(x,t)∂t=∂2v(x,t)∂x2v(−1,t)=0v(1,t)=0v(x,0)=sin(2πx)Suppose v(x,t)=X(x+1)T(t), then we have {v(−1,t)=X(0)T(t)=0v(1,t)=X(2)T(t)=0 ⇒{X(0)=0X(2)=0 and X″(x+1)X(x+1)=T′(t)T(t)=λCase I λ=0⇒X″(x+1)=0⇒X(x+1)=c1x+c2⇒X(x)=c1(x−1)+c2=c1x+c3⇒{X(0)=c3=0X(2)=2c1+c3=0⇒{c1=0c3=0⇒X=0⇒X(x+1)=0⇒v=0Case II λ>0⇒λ=ρ2⇒X2(x+1)−ρ2X(x+1)=0⇒X(x+1)=c1eρx+c2e−ρx⇒X(x)=c1eρ(x−1)+c2e−ρ(x−1)=c3eρx+c4e−ρx⇒{X(0)=c3+c4=0X(2)=c3e2ρ+c4e−2ρ=0⇒c3e2ρ−c3e−2ρ=0⇒c3(e4ρ−1)=0⇒c3=0⇒c4=0⇒X=0⇒v=0Case III λ<0⇒λ=−ρ2⇒X2(x+1)+ρ2X(x+1)=0⇒X(x+1)=c1cos(ρx)+c2sin(ρx)⇒X(x)=c1cos(ρ(x−1))+c2sin(ρ(x−1))=c3cos(ρx)+c4sin(ρx)⇒{X(0)=c3=0X(2)=c3cos(2ρ)+c4sin(2ρ)=0⇒sin(2ρ)=0⇒2ρ=nπ⇒ρ=nπ2⇒Xn(x)=Bnsinnπx2,n∈N⇒T′+ρ2T=0⇒T=c5e−ρ2t⇒Tn(t)=Ane−n2π2t/4⇒v(x,t)=X(x+1)T(t)=∞∑n=1Cnsinnπ(x+1)2e−n2π2t/4⇒v(x,0)=∞∑n=1Cnsinnπ(x+1)2=sin(2πx)⇒{C4=1Cn=0,n≠4⇒v(x,t)=sin(2π(x+1))e−4π2t=sin(2πx)e−4π2t⇒u(x,t)=v(x,t)+x+3⇒u(x,t)=sin(2πx)e−4π2t+x+3
========================== END =========================
解題僅供參考,碩士班歷年試題及詳解
沒有留言:
張貼留言