2025年6月30日 星期一

114年海大附中特招-數學詳解

基北區國立臺灣海洋大學附屬基隆海事高級中等學校

114 學年度高級中等學校特色招生考試分發入學


解答:$$\cases{閃閃:08:00:00\to 08:00:35 \to 08:01:10 \to 08:01:45 \to 08:02:20\\ 噴泉:08:00:00 \to 08:00:40 \to 08:01:20 \to 08:02:00\\ 發光:08:00:00 \to 08:00:25\to 08:00:50 \to 08:01:15 \to 08:01:40 \to 08:02:05} \\ \Rightarrow 08:01:55之後噴泉火花先閃,故選\bbox[red, 2pt]{(A)}$$
解答:$$234=2\times 3^2\times 13 \Rightarrow 11不是234的因數,故選\bbox[red, 2pt]{(C)}$$
解答:$$步驟二:-3(x-1)=-3x+3 \ne -3x-1,故選\bbox[red, 2pt]{(B)}$$
解答:$$3x+2y+4=35 \Rightarrow 3x+2y=31 \Rightarrow (x,y)=(1,14), (3,11), (5,8),(7,5), (9,2),共五組,故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{y=0 代入3x-y+12=0 \Rightarrow x=-4\\ y=0代入ax-5y+20=0 \Rightarrow x=-20/a} \Rightarrow -4=-{20\over a} \Rightarrow a=5,故選\bbox[red, 2pt]{(B)}$$
解答:$$(A)\times: 3x\lt 2x-5 \Rightarrow x\lt -5 \\(B)\times: 3x\lt 4x-5 \Rightarrow 5\lt x \\(C) \bigcirc: x\lt 2x+5 \Rightarrow -5\lt x\\ (D)\times: x\gt 2x+5 \Rightarrow -5\gt x\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{11個數總和=37\times 11=407\\ 前6個數總和=31\times 6=186\\ 後6個數總和=45\times 6=270} \Rightarrow 中位數=270+186-407=49,故選\bbox[red, 2pt]{(D)}$$
解答:$$利用長除法可得2x^2+x+3=(x-1)(2x+3)+6 \Rightarrow 商式+餘式=2x+3+6=2x+9\\,故選\bbox[red, 2pt]{(A)}$$
解答:$$77x^2+ 12x-32=(7x-4)(11x+8) =(7x+a)(bx+c )\Rightarrow \cases{a=-4\\ b=11\\ c=8}\\ \Rightarrow a+b+c=15,故選\bbox[red, 2pt]{(C)}$$
解答:$$圓圈圖形 {\Large\bullet}在最上層的月份\to 9月,故選\bbox[red, 2pt]{(A)}$$
解答:
$$\triangle ACD面積={\sqrt 3\over 4}\times 8^2 =16\sqrt 3\Rightarrow 梯形ADEB面積=16\sqrt 3\times 2=32\sqrt 3 \\ L_1與L_2距離=\triangle ACD的高=4\sqrt 3 \Rightarrow 梯形ADEB面積={(8+2a)\cdot 4\sqrt 3\over 2} =(4+a)\cdot 4\sqrt 3=32\sqrt 3\\ \Rightarrow a=4,故選\bbox[red, 2pt]{(C)}$$
解答:
$$假設\overline{AC}與\overline{PQ}交於O, 則\overline{AC}=\sqrt{\overline{AD}^2+ \overline{AB}^2} =\sqrt{12^2+16^2} =20 \Rightarrow \overline{AO}=\overline{CO}=10\\ 作\overline{RS} \parallel\overline{AB}且通過O \Rightarrow \cases{\angle AOP=\angle QOC =90^\circ\\ \overline{AO}=\overline{OC} \\ \angle APQ=\angle PQC} \Rightarrow \triangle AOP \cong \triangle COQ \Rightarrow \overline{RO}=\overline{OS}=12/2=6 \\ \Rightarrow \overline{AR}=\sqrt{\overline{AO}^2-\overline{OR}^2} =8, 又\angle RAO+\angle AOR=90^\circ=  \angle RAO+\angle APO \Rightarrow \angle AOR=\angle APO\\ \Rightarrow \triangle ARO \sim \triangle ORP \Rightarrow {\overline{OR}\over \overline{RP}} ={\overline{AR} \over \overline{OR}} \Rightarrow {6\over \overline{RP}} ={8\over 6} \Rightarrow \overline{RP} ={9\over 2} \Rightarrow \overline{PD}=16-8-{9\over 2}={7\over 2}\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$A(-29,-50) \xrightarrow{第x天後} (-29+2x,-50+3x) 位於第一象限 \Rightarrow \cases{-29+2x\gt 0\\ -50+3x\gt 0} \\ \Rightarrow \cases{x\gt 29/2\\ x\gt 50/3} \Rightarrow \cases{x\ge 15\\ x\ge 17} \Rightarrow 至少17天,故選\bbox[red, 2pt]{(B)}$$
解答:$${x\over 2} ={x+y\over 3}={y+z\over 5} =t \Rightarrow \cases{x=2t\\ y=3t-x=t\\ z=5t-y=4t} \Rightarrow 2x-3y+z=5t=55 \Rightarrow t=11\\ \Rightarrow \cases{x=22\\ y=11\\ z=44} \Rightarrow (x+2):(y-3):(z-4) =24:8:40=3:1:5,故選\bbox[red, 2pt]{(B)}$$
解答:


$$\overline{GF}: \overline{FB}=3:5= \triangle AFG:\triangle ABF \Rightarrow \cases{\triangle AFG={3\over 8}\cdot 110 ={165\over 4} \\ \triangle ABF={5\over 8}\cdot 110= {275\over 4}}\\ 假設\cases{\triangle CEG面積=a\\ 四邊形DEGF面積=b\\ \triangle BDF面積=c}, \\由於\cases{ \overline{AG} =\overline{GC} \Rightarrow \cases{\triangle BCG=\triangle ABG\Rightarrow a+b+c=110 \\ \triangle CEG:\triangle CAD=1:4 \Rightarrow a:a+b+{165\over 4}=1:4}\\ \overline{BF}: \overline{FG}=5:3 \Rightarrow c:c+b=25:64} \\ \Rightarrow \cases{c={25\over 39}b\\ a={b\over 3}+{55\over 4}} \Rightarrow a+b+c=110 \Rightarrow b={195\over 4} \Rightarrow a=30,故選\bbox[red, 2pt]{(B)}$$
解答:
$$假設圓半徑R \Rightarrow \overline{OC}=\sqrt{R^2+4} \Rightarrow \overline{BC}=R+\sqrt{R^2+4} \\\Rightarrow 直角\triangle ABC面積= \triangle ABO+ \triangle AOC \Rightarrow {1\over 2}(R+\sqrt{R^2+4}) \cdot 24={1\over 2}\cdot 24R+{1\over 2}\cdot26R \\ \Rightarrow 24(R+\sqrt{R^2+4})= 24R+26R \Rightarrow 24\sqrt{R^2+4}=26R \Rightarrow 576(R^2+4) =676R^2 \\ \Rightarrow 100R^2=2304 \Rightarrow R={24\over 5},故選\bbox[red, 2pt]{(D)}$$
解答:

$$圓心角=2倍圓周角 \Rightarrow \angle AOB=2\angle ACB=2\times 24^\circ=48^\circ \\又\overline{OA} =\overline{OB} =半徑\Rightarrow \angle BAO=\angle ABO ={180^\circ-48^\circ\over 2}=66^\circ,故選\bbox[red, 2pt]{(A)}$$
解答:$$y=x^2+1 \xrightarrow{向右平移5}   y=(x-5)^2+1 \Rightarrow 頂點A(5,1) \Rightarrow A至y+1=0的距離為2 \\ \Rightarrow A的對稱點A'(5,1-2\cdot 2)=(5,-3) \Rightarrow 對稱圖形為y=-(x-5)^2-3,故選\bbox[red, 2pt]{(D)}$$
解答:$$甲比乙大的情形:(甲,乙)=(5,2),(5,4),(7,2),(7,4),(7,6) ,(8,2),(8,4),(8,6),共8種\\ 全部有3\times 4=12種,機率為{8\over 12}={2\over 3},故選\bbox[red, 2pt]{(C)}$$
解答:


$$由上圖可知,故選\bbox[red, 2pt]{(D)}$$
解答:$$八位同學成績由低至高排序,依次為a_1,a_2,\dots, a_8\\由盒狀圖可知 \cases{a_1=24\\ a_2+a_3=48\times 2\\ a_4+a_5=76\times 2\\ a_6+a_7= 90 \times 2\\ a_8=100} \Rightarrow 平均值={1\over 8}({24+96+ 152+180+100}) =69,故選\bbox[red, 2pt]{(B)}$$
解答:$$ar^3=2025 \Rightarrow \cases{r=2 \Rightarrow a不是整數 \\r=3 \Rightarrow a=75 \Rightarrow a+r=78 \\ r=4\Rightarrow a不是整數 \\ \cdots},故選\bbox[red, 2pt]{(D)}$$
解答:$$y=(x+a)^2+b的頂點為(-2,2) \Rightarrow \cases{a=2\\ b=2} \Rightarrow y=-(x+b)^2+a=-(x+2)^2+2 \\ \Rightarrow 圖形y=-(x+2)^2+2為凹向下\Rightarrow 在x=-2時有最大值2,故選\bbox[red, 2pt]{(D)}$$
解答:


$$假設\cases{E為\overline{BC}中點 \\外接圓半徑為r} \Rightarrow \cases{ \overline{BE}=5 \Rightarrow \overline{AE}=\sqrt{13^2-5^2} =12 \Rightarrow \overline{OE}=12-r\\ \overline{OA} =\overline{OB}=r} \\ 直角\triangle OBE: r^2=5^2+(12-r)^2 \Rightarrow r={169\over 24}  \Rightarrow \overline{OE}=12-r={119\over 24} \\G為重心\Rightarrow \overline{GE}={1\over 3}\overline{AE}={1\over 3}\cdot 12=4 \Rightarrow \overline{OG} ={119\over 24}-4={23\over 24},故選\bbox[red, 2pt]{(A)}$$
解答:
$$假設\angle AFD= \theta \Rightarrow \cases{\angle AED=\theta\\ \angle AFC= \angle ABC=180^\circ-\theta } \Rightarrow \cases{\angle BAC=180^\circ-62^\circ-(180^\circ-\theta)=\theta-62^\circ\\ \angle DAE=180^\circ-51^\circ-\theta=129^\circ-\theta} \\ \Rightarrow \angle BAC +\angle DAE=\theta-62^\circ+129^\circ-\theta=129^\circ-62^\circ=67^\circ,故選\bbox[red, 2pt]{(B)}$$
 



====================== END ==========================
解題僅供參考,其他特招試題及詳解







沒有留言:

張貼留言