臺北市 114 學年度市立國民中學正式教師聯合甄選
貳、專業科目
選擇題(共 40 題,每題 1.75 分,共 70 分)
解答:$$(10A+B)+(10B+A)=11(A+B)= k^2 \Rightarrow A+B=11 \Rightarrow (A,B)=(2,9), (3,8), \dots, (9,2) \\ \Rightarrow 共8組,故選\bbox[red, 2pt]{(C)}$$

解答:$$全部52張牌,其中有4張3及4張8,因此抽出m張後剩下的牌不可以有4張3或4張8,\\因此m\ge 49,故選\bbox[red, 2pt]{(D)}$$

解答:$$假設x^2+Px+19=0的兩個解為\alpha, \beta \Rightarrow \alpha\beta=19 \Rightarrow \cases{\alpha=1\\ \beta=19 } \Rightarrow P=-(\alpha+\beta)=-20\\ 又x^2-Ax+B=0的兩個解為\alpha+1,\beta+1\Rightarrow \cases{B=(\alpha+1)(\beta+1)=2\times 20=40\\ A=-(\alpha+1+\beta+1) =-22} \\ \Rightarrow A+B=40-22=18,故選\bbox[red, 2pt]{(A)}$$
解答:$$(x-1)^2+(y+1)^2=25 \xrightarrow{向左移2單位}(x-1+2)^2+(y+1)^2=25 \Rightarrow (x+1)^2+(y+1)^2=25 \\ \xrightarrow{向上移3單位} (x+1)^2+(y+1-3)^2=25 \Rightarrow (x+1)^2+(y-2)^2=25,故選\bbox[red, 2pt]{(A)}$$
解答:
$$此題相當於求兩單位圓垂疊區域,即上圖著色面積的兩倍,也就是\\ 2\left({1\over 4}\pi- {1\over 2} \right) ={\pi\over 2}-1,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{k_1= 1\text{ mod }7 \\k_2= 4\text{ mod }7 \\k_3= 6\text{ mod }7 \\k_4= 5\text{ mod }7 \\k_5= 2 \text{ mod }7 \\k_6= 0\text{ mod }7 \\k_7= 1\text{ mod }7 \\ \cdots} \Rightarrow 循環數為6 \Rightarrow 2016= 0 \text{ mod }6 \Rightarrow k_{2016} =0 \text{ mod }7,故選\bbox[red, 2pt]{(D)}$$
解答:$$\begin{array}{c|cccccccccccc|cc} n& 1& 2& 3& 4& 5& 6&7&8&9&10 &11&12&13 &14 &15\\\hline a_n & 1& 8& 9 & 7&6&3&9&2&1&3&4&7&1&8 &9\end{array} \\ \Rightarrow 循環數為12 \Rightarrow S_{12}=60 \Rightarrow 1000=60\times 16+40 \\ 又a_1+a_2+\cdots+a_7=43 \Rightarrow 最小的n=12\times 16+7= 199,故選\bbox[red, 2pt]{(B)}$$
解答:$$f(x)=3x^4-16x^3+6x^2+72x+100 \Rightarrow f'(x)=12x^3-48x^2+12x+72 \\= 12(x-3)(x-2)(x+1) \gt 0 \Rightarrow x\gt 3或-1\lt x\lt 2,故選\bbox[red, 2pt]{(C)}$$
解答:$$f(x)=2x^3-12x^2+30x+3 \Rightarrow f'(x)=6x^2-24x+30= 6(x^2-4x+5) \\ \Rightarrow f'(x)=0 無實根\Rightarrow y=f(x)圖形為左下右上, 僅有一實根,故選\bbox[red, 2pt]{(B)}$$
解答:$$k(-x)=\cos((-x)^3)= \cos(-x^3)= \cos(x^3) \Rightarrow k(-x)=k(x) \Rightarrow k(x)為偶函數,故選\bbox[red, 2pt]{(D)}$$
解答:$$f(x)={1\over (x-1)^2}的定義域\{ x\mid x\in \mathbb R, x\ne 0\} \\(D) f_4(0)=0 \Rightarrow 0\in f_4的定義域,故選\bbox[red, 2pt]{(D)}$$
解答:$$f_1(x)=x^{11}為奇函數\Rightarrow \int_{-88}^{88} x^{11}\,dx =0 \\ 因此\int_{-88}^{88} x^{11}\,dx+ \int_{-10}^{10} 2|x|\,dx+ \int_{-1}^1 3x^2\,dx =\int_{-10}^{10} 2|x|\,dx+\int_{-1}^1 3x^2\,dx \\= 4 \int_{0}^{10}x\,dx +2 \int_0^1 3x^2\,dx =4\times 50 +2\times 1=202,故選\bbox[red, 2pt]{(B)}$$
解答:$$假設A= \begin{bmatrix} 1&0\\0&0 \end{bmatrix}, B= \begin{bmatrix} 0& 1\\0&0 \end{bmatrix}\\ (A) \times: \cases{AB= \begin{bmatrix} 0&1\\0&0 \end{bmatrix} \\BA= \begin{bmatrix} 0 &0 \\0&0 \end{bmatrix} } \Rightarrow AB\ne BA \\(B)\times: BA=0, 但A\ne0且 B\ne 0\\(D)\times :反矩陣不存在\\,故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{個位數字的總和=10(1+2+ \cdots+ 9)=450 \\ 十位數字的總和=10(1+2+ \cdots+ 9)=450\\ 百位數字的總和=1} \Rightarrow 各位數字的總和=901 = 1\text{ mod }9,故選\bbox[red, 2pt]{(B)}$$
解答:$$\sqrt x+ \sqrt y =\sqrt{336} =4\sqrt{21} \\ 取\cases{\sqrt x=a\sqrt{21} \\ \sqrt y= b\sqrt{21}} \Rightarrow a+b=4 有H^2_4=C^5_4=5組非負整數解,故選\bbox[red, 2pt]{(D)}$$
解答:$$18x+5y=48 \Rightarrow \cases{x=1 \Rightarrow y=6 \\ x=2 \Rightarrow \times\\ x=3 \Rightarrow \times } \Rightarrow 只有一組正整數解,故選\bbox[red, 2pt]{(B)}$$
解答:$$\left(x^2+{1\over x} \right)^{12} =\sum_{n=0}^{12}C^{12}_n x^{2n}\cdot x^{n-12} \Rightarrow 常數項發生在n=4時, 係數=C^{12}_4=495,故選\bbox[red, 2pt]{(C)}$$
解答:$$頂點(4,-11)在x軸下方且與x軸交於兩點,表示圖形凹向上(a\gt 0),y截距為負值(c\lt 0)\\ 又頂點在第四象限代表兩根之和為正值 \Rightarrow -{b\over a}\gt 0 \Rightarrow b\lt 0,故選\bbox[red, 2pt]{(A)}$$


解答:$$過內心等分三角形面積的直線同時也等分三角形周長, \href{https://matrix67.com/blog/archives/5313}{參考資料}\\ \triangle ABC周長=23+22+21= 66 \Rightarrow \overline{AP}+\overline{AQ} ={66\over 2} =33,故選\bbox[red, 2pt]{(D)}$$
解答:$$\lim_{x\to 0}{\tan 3x\over 2x} =\lim_{x\to 0}{(\tan 3x)'\over (2x)'} =\lim_{x\to 0}{3\sec^2 3x\over 2} = {3\over 2},故選\bbox[red, 2pt]{(A)}$$
解答:$$\cases{1^5 = 1\text{ mod }4 \\2^5 = 0\text{ mod }4 \\3^5 = 3\text{ mod }4 \\4^5 = 0\text{ mod }4 \\5^5 = 1\text{ mod }4 \\6^5 = 0\text{ mod }4 \\7^5 = 3\text{ mod }4 \\8^5 = 0\text{ mod }4 \\ \cdots} \Rightarrow 循環數4且四餘數相加為4的倍數 \Rightarrow \sum_{k=1}^{100} k^5 =0 \text{ mod 4},故選\bbox[red, 2pt]{(A)}$$
解答:
$$O是圓心, 也是\triangle ABC及\triangle PQR的重心\\ 假設\overline{CD}=1 \Rightarrow \overline{BD}=\sqrt 3 \Rightarrow \cases{\overline{OD}=\sqrt 3/3 =\overline{OP}\\ \triangle ABC=\sqrt 3} \Rightarrow \cases{ \overline{PE}=\sqrt 3/2\\ 圓面積=\pi/3} \Rightarrow \overline{ER}=1/2 \\\Rightarrow \triangle PQR=\sqrt 3/4 \Rightarrow \triangle PQR:圓O:\triangle ABC={\sqrt 3\over 4}:{\pi\over 3}:\sqrt 3=1:{4\pi\over 3\sqrt 3}:4,故選\bbox[red, 2pt]{(D)}$$
解答:$$\cases{P\in L_1\\ Q\in L_2} \Rightarrow \cases{P(t+2,-3t, -t+4) \\Q(2s+1,-s-2,3s)} \Rightarrow P=Q \Rightarrow \cases{t+2=2s+1\\ -3t=-s-2\\ -t+4=3s} \Rightarrow \cases{t=1\\s=1}\\ \Rightarrow 交點P=Q=(3,-3,3),故選\bbox[red, 2pt]{(D)}$$
解答:$$a(x-1)(x+2)+b(x+2)+c(x-1)^2=(a+c)x^2+(a+b-2c)x-2a+2b+c =1 \\ \Rightarrow \cases{a+c=0\\ a+b-2c=0\\ -2a+2b+c=1} \Rightarrow \cases{a=-1/9\\ b=1/3\\ c=1/9} \Rightarrow a+b+c ={1\over 3},故選\bbox[red, 2pt]{(C)}$$
解答:$$\cases{\alpha+\beta+ \gamma= -a\\ \alpha\beta+ \beta\gamma + \gamma\alpha=b\\ \alpha\beta\gamma =-c} \Rightarrow \cases{{1\over \alpha}+{1\over \beta}+{1\over \gamma }={b\over -c} \\ {1\over \alpha\beta}+{1\over \beta\gamma}+{1\over \gamma \alpha}={a\over c} \\ {1\over \alpha \beta\gamma }=-{1\over c}} \Rightarrow x^3+{b\over c}x^2+{ a\over c}x+{1\over c}=0 \\ \Rightarrow cx^3+bx^2+ax+1=0,故選\bbox[red, 2pt]{(A)}$$
解答:$$需符合\cases{a+b+c=30 \\ a\ne b\\ b\ne c\\ c\ne a\\ a+b\gt c\\ b+c\gt a\\ c+a\gt b},a,b,c\in \mathbb N\\符合要求的三邉長為(3,13,14), (4,12,14), (5,11,14), (5,12,13), (6,10,14),(6,11,13), \\(7,9,14),(7,10,13), (7,11,12), (8,9,13),(8,10,12), (9,10,11)\\ 合計共12個,故選\bbox[red, 2pt]{(A)}$$
解答:

$$假設\cases{\overline{AM}=a\\ \overline{BR}=b \\\overline{BN} =c}, \overline{RN}為折線 \Rightarrow \cases{\overline{RM}=b\\ \overline{MN}=c} ,又\cases{\overline{MP}為折線\Rightarrow \cases{\overline{MO}=a\\ \overline{OP}=\overline{PD}=d} \\ \overline{NP}為折線\Rightarrow \cases{\overline{CP}=\overline{OP}=d\\ \overline{NC} = \overline{NO}=\overline{MN}-\overline{MO}=c-a}} \\ 最後\overline{MB}為折線\Rightarrow \overline{BO}=\overline{AB}=\overline{CD}=2d, 詳如上圖;\\ \overline{AD} =\overline{BC} \Rightarrow 2a=2c-a \Rightarrow c={3\over 2}a \Rightarrow \cases{\overline{BN}=3a/2\\ \overline{NO}=\overline{NC}=a/2} \\ \angle C=90^\circ \Rightarrow \overline{BP}^2=\overline{BC}^2+\overline{CP}^2 \Rightarrow 9d^2=4a^2+d^2 \Rightarrow d={a\over \sqrt 2} \\ \Rightarrow \cases{\overline{MP}^2 =a^2+d^2 =3a^2/2\\ \overline{NP}^2=(a/2)^2+d^2 =3a^2/4} \Rightarrow \cases{ \overline{MP}= \sqrt 3a/\sqrt 2\\ \overline{NP} =\sqrt 3a/2} \Rightarrow MQNP面積={3a^2\over 2\sqrt 2} \\ \Rightarrow {MQNP\over ABCD} ={3a^2/2\sqrt 2\over 2a\cdot 2d=2\sqrt 2a^2 } ={3\over 8},故選\bbox[red, 2pt]{(C)}$$
解答:$$(x^2+25x+52)^2 =9(x^2+25x+80 )\Rightarrow x^4+\cdots+52^2-9\cdot 80=0\\ \Rightarrow 四根之積=52^2-9\cdot 80=1984,故選\bbox[red, 2pt]{(D)}$$
解答:

沒有留言:
張貼留言