104年公務人員特種考試司法人員、法務部調查局調查人員、國家安全局國家安全情報人員、海岸巡防人員及移民行政人員考試試題
考試別:國家安全情報人員
等別:三等考試
類 科組 :電子組
科 目:工程數學
等別:三等考試
類 科組 :電子組
科 目:工程數學
\\\Rightarrow s^2L\{y\}-sy(0)-y'(0)+2(sL\{y\}-y(0))+4L\{y\}=\frac{7}{s+3}\\
\Rightarrow s^2L\{y\}-s-1+2sL\{y\}-2+4L\{y\}=\frac{7}{s+3}\Rightarrow L\{y\}(s^2+2s+4)=\frac{7}{s+3}+s+3\\
\Rightarrow L\{y\}=\frac{s^2+6s+16}{(s+3)(s^2+2s+4)}=\frac{1}{s+3}+\frac{4}{s^2+2s+4}=\frac{1}{s+3}+\frac{4}{(s+1)^2+3}\\
\Rightarrow y=L^{-1}\left\{\frac{1}{s+3}+\frac{4}{(s+1)^2+3}\right\}=e^{-3t}+\frac{4}{\sqrt{3}}e^{-t}\sin{\left(\sqrt{3}t\right)}\\
\Rightarrow \bbox[red,2pt]{y(t)=e^{-3t}+\frac{4}{\sqrt{3}}e^{-t}\sin{\left(\sqrt{3}t\right)}}$$
解:$$\begin{cases}x_1+x_2+3x_3-x_4=0\\x_1-2x_2+x_3-x_4=1\\4x_1+x_2+8x_3-x_4=0\end{cases}\Rightarrow \left[\begin{array}{rrrr|r}1 & 1 & 3 & -1& 0\\1&-2&1&-1&1\\4&1&8&-1&0\end{array}\right]\xrightarrow{(-1)r_1+r_2,(-4)r_1+r_3} \left[\begin{array}{rrrr|r}1 & 1 & 3 & -1& 0\\0&-3&-2&0&1\\0&-3&-4&3&0\end{array}\right]\\
\xrightarrow{(-1)r_2+r_3}\left[\begin{array}{rrrr|r}1 & 1 & 3 & -1& 0\\0&-3&-2&0&1\\0&0&-2&3&-1\end{array}\right]\Rightarrow \bbox[red,2pt]{\left[\begin{array}{r}x_1 \\ x_2 \\x_3 \\ x_4 \end{array}\right]=s\left[\begin{array}{r}-5/2 \\ -1 \\3/2 \\ 1 \end{array}\right]+\left[\begin{array}{r}-5/6 \\ -2/3 \\1/2 \\ 0 \end{array}\right],s\in R}$$
解:$$Y= {1\over Z}\Rightarrow Z={1\over Y}\Rightarrow J={\partial Z\over \partial Y}=-{1\over Y^2}\Rightarrow f_Y(y)=f_Z(z=1/y)|J|\\=\frac{1}{\sqrt{2\pi}}e^{-(1/y)^2/2}\left|-\frac{1}{y^2}\right|=\bbox[red,2pt]{\frac{1}{y^2\sqrt{2\pi}}e^{-1/(2y^2)},\,-\infty < y< \infty, y\ne 0 }$$
解:$$\iint_\sum{F\cdot nd\sigma}=\iiint_D{\nabla\cdot F\,dV}=\iiint_D{\left(\frac{\partial}{\partial x}x^2+\frac{\partial}{\partial y}y^2+\frac{\partial}{\partial z}z^2\right)\,dV}=\iiint_D{(2x+2y+2z)dV}\\
=\int_0^1\int_0^1\int_0^1{(2x+2y+2z)dxdydz}=\int_0^1\int_0^1{(1+2y+2z)dydz}=\int_0^1(2+2z)dz=\bbox[red,2pt]{3}$$
解:$$F=(\cos{(t)}+t\sin{(t)})\vec{i}+(sin{(t)}-t\cos{(t)})\vec{j}+(2t^2)\vec{k}\Rightarrow F'=t\cos{(t)}\vec{i}+t\sin{(t)}\vec{j}+4t\vec{k}\\
\Rightarrow |F'|=\sqrt{F'\cdot F'}=\sqrt{t^2\cos^2{(t)}+t^2\sin^2{(t)}+16t^2}=\sqrt{17t^2}=\sqrt{17}t,故選\bbox[red,2pt]{(C)}$$
解:$$C:r(\theta)=\cos{\theta}\vec{i}+\sin{\theta}\vec{j}\Rightarrow \int_C{F\cdot dr}=\int_0^\pi{(-\sin{\theta}\cdot \frac{\partial}{\partial \theta}\cos{\theta}+\cos{\theta}\cdot \frac{\partial}{\partial \theta}\sin{\theta})d\theta}\\
=\int_0^\pi{1d\theta}=\pi,故選\bbox[red,2pt]{(B)}$$
解:$$\nabla^2 u=\frac{\partial^2}{\partial x^2}u+\frac{\partial^2}{\partial y^2}u=2y+0=2y,故選\bbox[red,2pt]{(B)}$$
解:$$\int_0^\pi{\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}\,dt}=\int_0^\pi{\sqrt{2}\,dt}=\sqrt{2}\pi,故選\bbox[red,2pt]{(A)}$$
解:$$\left|\begin{matrix}-2-\lambda&2\\2&1-\lambda\end{matrix}\right|=0\Rightarrow (\lambda-1)(\lambda+2)-4=0\Rightarrow \lambda^2+\lambda-6=0\Rightarrow (\lambda+3)(\lambda-2)=0\\ \Rightarrow \lambda=2,-3,故選\bbox[red,2pt]{(D)} $$
解:$$A=\left[\begin{matrix}3&0\\8&-1\end{matrix}\right]\Rightarrow A^2= \left[\begin{matrix}9&0 \\16&1\end{matrix}\right]\Rightarrow A^3=\left[\begin{matrix}27&0 \\56&-1\end{matrix}\right]\\
\Rightarrow A^3-2A^2-A=\left[\begin{matrix}27&0 \\56&-1\end{matrix}\right]-\left[\begin{matrix}18&0 \\32&2\end{matrix}\right]-\left[\begin{matrix}3&0\\8&-1\end{matrix}\right] =\left[\begin{matrix}6&0\\16&-2\end{matrix}\right]=2A,故選\bbox[red,2pt]{(B)}$$
解:$$A=\left|\begin{matrix}4&8&12\\5&7&9\\3&6&2\end{matrix}\right|=4\left|\begin{matrix}1&2&3\\5&7&9\\3&6&2\end{matrix}\right|\xrightarrow {(-3)r_1+r_3}4\left|\begin{matrix}1&2&3\\5&7&9\\0&0&-7\end{matrix}\right| =-28\left|\begin{matrix}1&2\\5&7\end{matrix}\right|=(-28)\times(-3)=84\\,故選\bbox[red,2pt]{(B)}$$
解:$$f(z)=\frac{-\cos{(z-i)}}{(z-2i)^3}=\frac{g(z)}{(z-2i)^3}\Rightarrow Res(f,2i)=\frac{1}{2}g''(2i)=\frac{1}{2}\cos{(2i-i)}=\frac{1}{2}\cosh{1}\\,故選\bbox[red,2pt]{(A)}$$
解:$$f(z)=\frac{3z^2+2}{(z-1)(z^2+9)}=\frac{3z^2+2}{(z-1)(z+3i)(z-3i)}\\\Rightarrow z=1,\pm 3i皆為f(z)之單極點,但只有z=1在C內\\
\Rightarrow \int_C{f(z)\,dz}=2\pi i\times Res\left(\frac{3z^2+2}{(z^2+9)},1\right)=2\pi i\times \frac{5}{10}=\pi i,故選\bbox[red,2pt]{(A)}$$
解:$$(1+i)^3=1+3i^2+3i+i^3=1-3+3i-i=-2+2i,故選\bbox[red,2pt]{(C)}$$
解:$$(A)u=\sin{(2t)}\cos{(4x)}\Rightarrow \begin{cases}u_t=2\cos{(2t)}\cos{(4x)}\\u_{xx}=-16\sin{(2t)}\cos{(4x)}\end{cases}\Rightarrow u_t\ne c^2 u_{xx}\\
(B)u=e^t\cos{(25x)}\Rightarrow \begin{cases}u_t =e^t\cos{(25x)}\\u_{xx} =-625e^t\cos{(25x)}\end{cases}\Rightarrow u_t\ne c^2 u_{xx}\\
(C)u=\cos{(4t)}\sin{(2x)}\Rightarrow \begin{cases}u_t=-4\sin{(4t)}\sin{(2x)}\\u_{xx} =-4\cos{(4t)}\sin{(2x)}\end{cases}\Rightarrow u_t\ne c^2 u_{xx}\\
(D)u=e^{-t}\sin{(x)}\Rightarrow \begin{cases}u_t =-e^{-t}\sin{(x)}\\u_{xx} =-e^{-t}\sin{(x)}\end{cases}\Rightarrow u_t= c^2 u_{xx}
\\,故選\bbox[red,2pt]{(D)}$$
解:$$(1+x)y''-4xy'+y=0\Rightarrow y''-\frac{4x}{1+x}y'+\frac{1}{1+x}y=0\Rightarrow x=-1為奇點,故選\bbox[red,2pt]{(B)}$$
解:$$f\left( x \right) 奇函數\Rightarrow A\left( \omega \right) =0\\ B\left( \omega \right) =\int _{ -\infty }^{ \infty }{ f\left( x \right) \sin { \left( \omega x \right) } d\omega } =\int _{ -\pi /2 }^{ 0 }{ (-1)\sin { \left( \omega x \right) } d\omega } +\int _{ 0 }^{ \pi /2 }{ \sin { \left( \omega x \right) } d\omega } \\ =\left. \left[ \frac { 1 }{ \omega } \cos { \left( \omega x \right) } \right] \right| _{ -\pi /2 }^{ 0 }+\left. \left[ \frac { -1 }{ \omega } \cos { \left( \omega x \right) } \right] \right| _{ 0 }^{ \pi /2 }\\ =\frac { 1 }{ \omega } \left( 1-\cos { \left( -\frac { \pi \omega }{ 2 } \right) } \right) -\frac { 1 }{ \omega } \left( \cos { \left( -\frac { \pi \omega }{ 2 } \right) } -1 \right) \\ =\frac { 2 }{ \omega } \left( 1-\cos { \left( \frac { \pi \omega }{ 2 } \right) } \right) \\ \Rightarrow f\left( x \right) =\frac { 1 }{ \pi } \int _{ 0 }^{ \infty }{ \left( A\left( \omega \right) \cos { \left( \omega x \right) } +B\left( \omega \right) \sin { \left( \omega x \right) } \right) d\omega } =\frac { 1 }{ \pi } \int _{ 0 }^{ \infty }{ B\left( \omega \right) \sin { \left( \omega x \right) } d\omega } \\ =\frac { 1 }{ \pi } \int _{ 0 }^{ \infty }{ \frac { 2 }{ \omega } \left( 1-\cos { \left( \frac { \pi \omega }{ 2 } \right) } \right) \sin { \left( \omega x \right) } d\omega } =\frac { 2 }{ \pi \omega } \int _{ 0 }^{ \infty }{ \left( 1-\cos { \left( \frac { \pi \omega }{ 2 } \right) } \right) \sin { \left( \omega x \right) } d\omega } ,故選\bbox[red,2pt]{(A)}$$
解:$$\cos { \frac { m\pi x }{ L } } \cos { \frac { m\pi x }{ L } } =\cos ^{ 2 }{ \frac { m\pi x }{ L } } \ge 0\Rightarrow \int _{ -L }^{ L }{ \cos ^{ 2 }{ \frac { m\pi x }{ L } } } \neq 0,故選\bbox[red,2pt]{(D)}$$
解:$$P_{ n }(x)=\frac { 1\cdot 3\cdot 5\cdots \left( 2n-1 \right) }{ n! } \left[ x^{ n }-\frac { n\left( n-1 \right) }{ 2\left( 2n-1 \right) } x^{ n-2 }+\frac { n\left( n-1 \right) \left( n-2 \right) \left( n-3 \right) }{ 2\cdot 4\cdot \left( 2n-1 \right) \left( 2n-3 \right) } x^{ n-4 }-\cdots \right] \\ \Rightarrow \begin{cases} P_{ 0 }(x)=\frac { 1 }{ 0! } x^{ 0 }=1 \\ P_{ 1 }(x)=\frac { 1 }{ 1! } x^{ 1 }=x \\ P_{ 2 }(x)=\frac { 1\cdot 3 }{ 2! } \left( x^{ 2 }-\frac { 2 }{ 2\cdot 3 } x^{ 0 } \right) =\frac { 1 }{ 2 } \left( 3x^{ 2 }-1 \right) \\ P_{ 3 }(x)=\frac { 1\cdot 3\cdot 5 }{ 3! } \left( x^{ 3 }-\frac { 3\cdot 2 }{ 2\cdot 5 } x^{ 1 } \right) =\frac { 1 }{ 2 } \left( 5x^{ 3 }-3x \right) \end{cases},故選\bbox[red,2pt]{(D)}$$
解:$$L\left\{ \left( 1-t \right) u\left( 1-t \right) \right\} =\int _{ 0 }^{ \infty }{ \left( 1-t \right) u\left( 1-t \right) { e }^{ -st }dt } =\int _{ 0 }^{ 1 }{ \left( 1-t \right) { e }^{ -st }dt } \\ =\left. \left[ -\frac { 1 }{ s } { e }^{ -st }+\frac { t }{ s } { e }^{ -st }+\frac { 1 }{ s^{ 2 } } { e }^{ -st } \right] \right| _{ 0 }^{ 1 }=\left( \frac { 1 }{ s^{ 2 } } { e }^{ -s } \right) -\left( -\frac { 1 }{ s } +\frac { 1 }{ s^{ 2 } } \right) \\ =\frac { 1 }{ s^{ 2 } } { e }^{ -s }+\frac { 1 }{ s } -\frac { 1 }{ s^{ 2 } } =\frac { 1 }{ s } -\frac { 1-{ e }^{ -s } }{ s^{ 2 } } ,故選\bbox[red,2pt]{(D)}$$
解:$$f_{ X }(x)=\int _{ Y }{ f_{ X,Y }dy } =\int _{ 0 }^{ x }{ \frac { 1 }{ 2 } { e }^{ -x }dy } =\frac { 1 }{ 2 } x{ e }^{ -x }\\ E\left[ Y^{ 2 }\mid X=x \right] =\int _{ Y }{ \frac { y^{ 2 }f_{ X,Y } }{ f_{ X } } dy } =\int _{ 0 }^{ x }{ \frac { y^{ 2 }\cdot \frac { 1 }{ 2 } { e }^{ -x } }{ \frac { 1 }{ 2 } x{ e }^{ -x } } dy } =\int _{ 0 }^{ x }{ \frac { y^{ 2 } }{ x } dy } =\frac { \frac { 1 }{ 3 } x^{ 3 } }{ x } =\frac { 1 }{ 3 } x^{ 2 },故選\bbox[red,2pt]{(D)}$$
解:$$\frac { 8個熟蛋取2個的情形 }{ 全部取2個的情形 } =\frac { C^{ 8 }_{ 2 } }{ C^{ 12 }_{ 2 } } =\frac { \frac { 8\times 7 }{ 2 } }{ \frac { 12\times 11 }{ 2 } } =\frac { 14 }{ 33 },故選\bbox[red,2pt]{(C)} $$
解:$$第1張牌抽到紅A(有2張)的機率為 2/52=1/26;\\
剩下51張牌中,抽到10或J(有8張)的機率 8/51;\\
剩下50張牌中,抽到4,5,6(有12張)的機率 12/50=6/25\\
因此機率為\frac{1}{26}\times\frac{8}{51}\times\frac{6}{25}=\frac{8}{13\times 17\times 25}=\frac{8}{5525},故選\bbox[red,2pt]{(A)} $$
解:$$A=\left[\begin{matrix}3&6&-2&7\\3&6&-5&4\\1&2&0&3\end{matrix}\right]\xrightarrow{(-3)r_3+r_2,(-3)r_3+r_1}\left[\begin{matrix}0&0&-2&-2\\0&0&-5&-5\\1&2&0&3\end{matrix}\right]\xrightarrow{r_1/(-2),r_2/(-5)} \left[\begin{matrix}0&0&1&1\\0&0&1&1\\1&2&0&3\end{matrix}\right]\\
\xrightarrow{(-1)r_1+r_2} \left[\begin{matrix}0&0&1&1\\0&0&0&0\\1&2&0&3\end{matrix}\right]\Rightarrow Ax=0 \Rightarrow \begin{cases}x_3+x_4=0\\x_1+2x_2+3x_4=0\end{cases}\Rightarrow \left[\begin{matrix}x_1\\x_2\\x_3\\x_4\end{matrix}\right] = s\left[\begin{matrix}-3\\0\\-1\\1\end{matrix}\right]+ t\left[\begin{matrix}-2\\1\\0\\0\end{matrix}\right]\\,故選\bbox[red,2pt]{(C)}$$
考選部未公布答案,解題僅供參考
沒有留言:
張貼留言