104 年公務人員特種考試關務人員考試、104 年公務人員特種考試身心障礙人員考試及104 年國軍上校以上軍官轉任公務人員考試考試
考試別:身心障礙人員考試
等別:三等考試
類 科 :電力工程
科 目:工程數學
等別:三等考試
類 科 :電力工程
科 目:工程數學
解:
(一)A=[00.950.60.80000.50]⇒|−λ0.950.60.8−λ000.5−λ|=0⇒det(A−λI)=0⇒λ3−0.76λ−0.24=0⇒(λ−1)(λ+0.4)(λ+0.6)=0⇒λ=1,−0.4,−0.6λ=1⇒[−10.950.60.8−1000.5−1][x1x2x3]=0⇒{x1=0.95x2+0.6x3x2=0.8x1x3=0.5x2⇒[x1x2x3]=k1[10.80.4]⇒取u1=[10.80.4]λ=−0.4⇒[0.40.950.60.80.4000.50.4][x1x2x3]=0⇒{0.4x1+0.95x2+0.6x3=00.8x1+0.4x2=00.5x2+0.4x3=0⇒[x1x2x3]=k2[0.4−0.81]⇒取u2=[0.4−0.81]λ=−0.6⇒[0.60.950.60.80.6000.50.6][x1x2x3]=0⇒{0.6x1+0.95x2+0.6x3=00.8x1+0.6x2=00.5x2+0.6x3=0⇒[x1x2x3]=k3[0.9−1.21]⇒取u3=[0.9−1.21]⇒矩陣A的一組eigenbasis為{(10.80.4),(0.4−0.81),(0.9−1.21)}(二)令P=[10.40.90.8−0.8−1.20.411]⇒P−1=[25/56125/22415/56−10/75/715/75/4−15/16−5/4]⇒A=P[1000−0.4000−0.6]P−1⇒lim
解:(一)\\ f_X(x)=\int{f_{X,Y}(x,y)\,dy}=\int_0^x{\lambda^3e^{-\lambda x}\,dy}=\bbox[red,2pt]{\lambda^3xe^{-\lambda x},x\ge 0}\\ (二)\\ f_{Y/X}\left(y/x\right)=\frac{f_{X,Y}(x,y)}{f_X(x)}=\frac{\lambda^3e^{-\lambda x}}{\lambda^3xe^{-\lambda x}}=\bbox[red,2pt]{\frac{1}{x},0\le y< x}\\ (三)\\ P(Y\le 0.1\mid X=0.5)=\int_0^{0.1}{\frac{1}{0.5}\,dy}=\int_0^{0.1}{2\,dy}=\bbox[red,2pt]{0.2}
解:(一)C:\frac{x-1}{2-1}=\frac{y-2}{-1-2}=\frac{z-3}{4-3}=t\Rightarrow C:(x,y,z)=\bbox[red,2pt]{(t+1,-3t+2,t+3),0\le t\le 1}\\ (二)\int_C{\vec{F}\cdot d\vec{r}}=\int_C{(3y,3x,2z)\cdot(dx,dy,dz)}=\int_C{(3ydx+3xdy+2zdz)}\\ \quad\quad =\int_0^1{(3(-3t+2)dt+3(t+1)(-3dt)+2(t+3)dt)}=\int_0^1{(-16t+3)\,dt}=-8+3=\bbox[red,2pt]{-5}\\ (三)\vec{F}=3y\vec{i}+3x\vec{j}+2z\vec{k}\Rightarrow \begin{cases}\frac{\partial f}{\partial x}=3y\\\frac{\partial f}{\partial y}=3x\\ \frac{\partial f}{\partial z}=2z\end{cases}\Rightarrow \begin{cases}f(x,y,z)=3xy+g_1(y,z)\\f(x,y,z)=3xy+g_2(x,z)\\ f(x,y,z)=z^2+g_3(x,y)\end{cases} \\ \Rightarrow \bbox[red,2pt]{f(x,y,z)=3xy+z^2+C,C為常數}
解:F\times G=-G\times F ,故選\bbox[red,2pt]{(C)}
解:F=xy\vec { i } +\left( zx-\sin { y } \right) \vec { j } +yz\vec { k } \Rightarrow \nabla \cdot F=\frac { \partial }{ \partial x } xy+\frac { \partial }{ \partial y } \left( zx-\sin { y } \right) +\frac { \partial }{ \partial x } yz\\ =y-\cos { y } \Rightarrow \left. \nabla \cdot F \right| _{ \left( -1,0,1 \right) }=0-\cos { 0 } =-1,故選\bbox[red,2pt]{(B)}
解:\nabla \times fA=f\nabla \times A,故選\bbox[red,2pt]{(D)}
解:依定義,故選\bbox[red,2pt]{(C)}
解:A=\left[ \begin{matrix} -3 & 2 \\ -10 & 6 \end{matrix} \right] \Rightarrow 特徵值為1,2\Rightarrow A=P\left[ \begin{matrix} 1 & 0 \\ 0 & 2 \end{matrix} \right] P^{ -1 }\Rightarrow f\left( A \right) =A^{ 3 }-2A^{ 2 }+A+I\\ =P\left[ \begin{matrix} 1 & 0 \\ 0 & 8 \end{matrix} \right] P^{ -1 }+P\left[ \begin{matrix} -2 & 0 \\ 0 & -8 \end{matrix} \right] P^{ -1 }+P\left[ \begin{matrix} 1 & 0 \\ 0 & 2 \end{matrix} \right] P^{ -1 }+P\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] P^{ -1 }\\ =P\left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right] P^{ -1 }\Rightarrow \left| f\left( A \right) \right| =\left| \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix} \right| =3,故選\bbox[red,2pt]{(B)}
解:A=P\left[ \begin{matrix} \lambda _{ 1 } & 0 & 0 \\ 0 & \lambda _{ 2 } & 0 \\ 0 & 0 & \lambda _{ 3 } \end{matrix} \right] P^{ -1 }\Rightarrow A^{ n }=P\left[ \begin{matrix} \lambda _{ 1 }^{ 2 } & 0 & 0 \\ 0 & \lambda _{ 2 }^{ 2 } & 0 \\ 0 & 0 & \lambda _{ 3 }^{ 2 } \end{matrix} \right] P^{ -1 }\\\Rightarrow A^{ n }=\begin{cases} P\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] P^{ -1 } & n是偶數 \\ P\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] P^{ -1 }=A & n是奇數 \end{cases}\\ \left( 2A+I \right) A\left( A+2I \right) =2A^{ 3 }+5A^{ 2 }+2A=2A+5A^{ 2 }+2A=4A+5A^{ 2 }\\ =P\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 4 \end{matrix} \right] P^{ -1 }+P\left[ \begin{matrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{matrix} \right] P^{ -1 }=P\left[ \begin{matrix} 9 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{matrix} \right] P^{ -1 }\Rightarrow 9,1,9為其特徵值,故選\bbox[red,2pt]{(B)}
解:A=\left[ \begin{matrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{matrix} \right] \Rightarrow det\left( A-\lambda I \right) =0\Rightarrow \left| \begin{matrix} 1-\lambda & 3 & 0 \\ 3 & 1-\lambda & 0 \\ 0 & 0 & -2-\lambda \end{matrix} \right| =0\Rightarrow (\lambda -1)^{ 2 }(-2-\lambda )+9(\lambda +2)=0\\ \Rightarrow \left( \lambda +2 \right) \left( 3^{ 2 }-(\lambda -1)^{ 2 } \right) =\left( \lambda +2 \right) \left( \lambda +2 \right) \left( -\lambda +4 \right) \Rightarrow \lambda =-2,-2,4,故選\bbox[red,2pt]{(D)}
解:R=\lim _{ n\rightarrow \infty }{ \left| \frac { a_{ n } }{ a_{ n+1 } } \right| } =\lim _{ n\rightarrow \infty }{ \left( \frac { \left( 2n \right) ! }{ { \left( n! \right) }^{ 2 } } \cdot \frac { { \left( \left( n+1 \right) ! \right) }^{ 2 } }{ \left( 2n+2 \right) ! } \right) } =\lim _{ n\rightarrow \infty }{ \left( \frac { \left( n+1 \right) \left( n+1 \right) }{ \left( 2n+2 \right) \left( 2n+1 \right) } \right) } \\ =\lim _{ n\rightarrow \infty }{ \frac { n^{ 2 }+2n+1 }{ 4n^{ 2 }+4n+1 } } =\frac { 1 }{ 4 } ,故選\bbox[red,2pt]{(A)}
解:f\left( z \right) =\frac { 1 }{ \left( z+4 \right) z^{ 3 } } \Rightarrow z=-4,0皆在C之內\Rightarrow \begin{cases} \underset { z=-4 }{ Res } { f\left( z \right) =\frac { 1 }{ { \left( -4 \right) }^{ 3 } } =-\frac { 1 }{ 64 } } \\ \underset { z=0 }{ Res } { f\left( z \right) =\frac { 1 }{ 2 } \times \frac { 2 }{ 4^{ 3 } } =\frac { 1 }{ 64 } } \end{cases}\\ \Rightarrow \int _{ C }{ f\left( z \right) dz } =2\pi i\left( -\frac { 1 }{ 64 } +\frac { 1 }{ 64 } \right) =0,故選\bbox[red,2pt]{(B)}
解:\lim _{ n\rightarrow \infty }{ \frac { 1 }{ { 2 }^{ n } } } =\lim _{ n\rightarrow \infty }{ \frac { 1 }{ { 3 }^{ n } } } =0,但\left\{ \frac { 1 }{ { 2 }^{ n } } \right\} \neq \left\{ \frac { 1 }{ { 3 }^{ n } } \right\} ,故選\bbox[red,2pt]{(D)}
解:y=x^{ m }\Rightarrow y'=mx^{ m-1 }\Rightarrow y''=m(m-1)x^{ m-2 }\\ x^{ 2 }y''+2xy'-6y=0\Rightarrow m(m-1)x^{ m }+2mx^{ m }-6x^{ m }=0\\ \Rightarrow m(m-1)+2m-6=0\Rightarrow m^2+m-6=0\Rightarrow (m+3)(m-2)=0\\ \Rightarrow m=2,-3\Rightarrow y=C_1x^2+C_2x^{-3}\Rightarrow m+n=2-3=-1,故選\bbox[red,2pt]{(C)}
解:y=a_{ 0 }+a_{ 1 }x+a_{ 2 }x^{ 2 }+\cdots \Rightarrow y'=a_{ 1 }+2a_{ 2 }x+3a_{ 3 }x^{ 2 }+\cdots \\ y(0)=0\Rightarrow a_{ 0 }=0\\ \sin { x } =x-\frac { x^{ 3 } }{ 3! } +\cdots 的常數項為0\\ e^{ y }=1+y+\frac { y^{ 2 } }{ 2! } +\cdots =1+\left( a_{ 0 }+a_{ 1 }x+\cdots \right) +\frac { 1 }{ 2 } \left( a_{ 0 }+a_{ 1 }x+\cdots \right) ^{ 2 }+\cdots 的常數項為1\\ \Rightarrow \sin { x } +e^{ y }的常數項為0+1=1=a_{ 1 }\\ \sin { x } =x-\frac { x^{ 3 } }{ 3! } +\cdots 的x係數為1\\ e^{ y }=1+\left( a_{ 0 }+a_{ 1 }x+\cdots \right) +\frac { 1 }{ 2 } \left( a_{ 0 }+a_{ 1 }x+\cdots \right) ^{ 2 }+\cdots 的x係數為a_{ 1 }+0+0\cdots =a_{ 1 }=1\\ \Rightarrow \sin { x } +e^{ y }的x係數為1+1=2=2a_{ 2 }\Rightarrow a_{ 2 }=1\\ \sum _{ n=0 }^{ 2 }{ a_n } =a_0+a_1+a_2=0+1+1=2,故選\bbox[red,2pt]{(C)}
解:Bessel\quad function\quad x^{ 2 }y''+xy'+\left( x^{ 2 }-v^{ 2 } \right) y=0\Rightarrow y=AJ_{ v }\left( x \right) +BY_{ v }\left( x \right) \\ 因此x^{ 2 }y''+xy'+\left( x^{ 2 }-\left( \frac { 1 }{ 3 } \right) ^{ 2 } \right) y=0\Rightarrow y=AJ_{ 1/3 }\left( x \right) +BY_{ 1/3 }\left( x \right) ,故選\bbox[red,2pt]{(B)}
解:f\left( t \right) =3t^{ 2 }-e^{ -t }-\int _{ 0 }^{ t }{ f\left( \alpha \right) { e }^{ t-\alpha }\, d\alpha } \Rightarrow f\left( 0 \right) =0-1-0=-1\\ \Rightarrow f'\left( t \right) =6t+e^{ -t }-\left( \int _{ 0 }^{ t }{ \frac { d }{ d\alpha } f\left( \alpha \right) { e }^{ t-\alpha }\, d\alpha } +f\left( t \right) { e }^{ t-t }\cdot \frac { d }{ dt } t-f\left( 0 \right) { e }^{ t }\cdot \frac { d }{ dt } 0 \right) \\ =6t+e^{ -t }-\int _{ 0 }^{ t }{ f\left( \alpha \right) { e }^{ t-\alpha }\, d\alpha } -f\left( t \right) \Rightarrow f'\left( 0 \right) =1-f\left( 0 \right) =2\\ \Rightarrow \begin{cases} f\left( 0 \right) =-1 \\ f'\left( 0 \right) =2 \end{cases},僅有(C)符合此條件,故選\bbox[red,2pt]{(C)}
解:無論F(s), \lim_{t\to\infty}{f(t)}皆為0,故選\bbox[red,2pt]{(A)}
解:(A)e^y非線性 (C) PDE 2次非線性 (D) (y')^3 非線性,故選\bbox[red,2pt]{(B)}
解:
在3個小孩的家庭中,有2女1男的機率為C^3_2\times\frac{1}{2^3}=\frac{3}{8}
至少有3個家庭: 有3個家庭或4個家庭,機率為C^4_3\times\frac{3^3}{8^3}\times\frac{5}{8} + \frac{3^4}{8^4} = \frac{23\times 3^3}{8^4}=\frac{621}{4096},故選\bbox[red,2pt]{(B)}
解:
選到第1枚錢幣的機率為1/2,投擲二次皆正面的機率為\frac{1}{3}\times\frac{1}{3}=\frac{1}{9},因此機率為\frac{1}{2}\times\frac{1}{9}=\frac{1}{18};
同理,選到第1枚錢幣的機率為1/2,投擲二次皆正面的機率為\frac{1}{5}\times\frac{1}{5}=\frac{1}{25},因此機率為\frac{1}{2}\times\frac{1}{25}=\frac{1}{50};
上述兩種機率的和為\frac{1}{18}+\frac{1}{50}=\frac{34}{450}=\frac{17}{225},故選\bbox[red,2pt]{(C)}
解:
主辦單位公布的答案是\bbox[red,2pt]{(C)}
解:\left( A \right) P\left( 0<x\le 2 \right) =1-P\left( x=0 \right) =1-2/7=5/7\\ \left( B \right) P\left( x=1 \right) =6/7-2/7=4/7\\ \left( C \right) P\left( x\le 0 \right) =P\left( x=0 \right) =2/7\\ \left( D \right) P\left( x\le 1 \right) =F\left( x=1 \right) =6/7,故選\bbox[red,2pt]{(D)}
沒有留言:
張貼留言