107年特種考試地方政府公務人員考試試題
等別:三等考試
類科 :電子工程、電力工程
科目:工程數學
類科 :電子工程、電力工程
科目:工程數學
(一)$$A為正交矩陣\Rightarrow AA^{ T }=A^{ T }A=I\Rightarrow \left[ \begin{matrix} a & 0 & 0 \\ b & \cos { \theta } & \sin { \theta } \\ c & -\sin { \theta } & \cos { \theta } \end{matrix} \right] \left[ \begin{matrix} a & b & c \\ 0 & \cos { \theta } & -\sin { \theta } \\ 0 & \sin { \theta } & \cos { \theta } \end{matrix} \right] =I\\ \Rightarrow \left[ \begin{matrix} a^{ 2 } & ab & ac \\ ab & b^{ 2 }+\cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } & bc \\ ac & bc & c^{ 2 }+\cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } \end{matrix} \right] =\left[ \begin{matrix} a^{ 2 } & ab & ac \\ ab & b^{ 2 }+1 & bc \\ ac & bc & c^{ 2 }+1 \end{matrix} \right] =I\\ \Rightarrow \bbox[red,2pt]{\begin{cases} a=\pm 1 \\ b=0 \\ c=0 \end{cases}}$$(二)$$det(A-\lambda I)=0\Rightarrow \left| \begin{matrix} a-\lambda & 0 & 0 \\ 0 & \cos { \theta -\lambda } & \sin { \theta } \\ 0 & -\sin { \theta } & \cos { \theta -\lambda } \end{matrix} \right| =0\Rightarrow \left( a-\lambda \right) \left( \cos { \theta -\lambda } \right) ^{ 2 }+\left( a-\lambda \right) \sin ^{ 2 }{ \theta } =0\\ \Rightarrow \left( a-\lambda \right) \left( \left( \cos { \theta -\lambda } \right) ^{ 2 }+\sin ^{ 2 }{ \theta } \right) =\left( \lambda -a \right) \left( \lambda ^{ 2 }-2\cos { \theta } +1 \right) =0\\ \Rightarrow \lambda _{ 1 }=a,\lambda _{ 2 }+\lambda _{ 3 }=2\cos { \theta } \Rightarrow \lambda _{ 1 }+\lambda _{ 2 }+\lambda _{ 3 }=a+2\cos { \theta } =\bbox[red,2pt]{\pm 1+2\cos { \theta }} $$
解:$$ty''+(t-1)y'+y=\left( ty''-y' \right) +\left( ty'+y \right) =\left( \frac { d }{ dt } \left( ty' \right) -2y' \right) +\left( \frac { d }{ dt } \left( ty \right) \right) \\ =\frac { d }{ dt } \left( ty' \right) -2\frac { d }{ dt } y+\frac { d }{ dt } \left( ty \right) =\frac { d }{ dt } \left( ty'-2y+ty \right) =0\Rightarrow ty'-2y+ty=C_{ 1 }\\ \Rightarrow 0\cdot y'\left( 0 \right) -2y\left( 0 \right) +0\cdot y\left( 0 \right) =0=C_{ 1 }\Rightarrow C_{ 1 }=0\\ \Rightarrow ty'-2y+ty=0\Rightarrow y'+\left( \frac { t-2 }{ t } \right) y=0\Rightarrow I\left( x \right) ={ e }^{ \int { \frac { t-2 }{ t } } dt }={ e }^{ \int { \left( 1-2/t \right) } dt }={ e }^{ t+\ln { \frac { 1 }{ t^{ 2 } } } }=\frac { 1 }{ t^{ 2 } } { e }^{ t }\\ \Rightarrow \left( \frac { 1 }{ t^{ 2 } } { e }^{ t }y \right) '=0\Rightarrow \frac { 1 }{ t^{ 2 } } { e }^{ t }y=C_{ 2 }\\ y\left( 1 \right) =2代入\Rightarrow C_{ 2 }=2e\Rightarrow \frac { 1 }{ t^{ 2 } } { e }^{ t }y=2e\Rightarrow \bbox[red,2pt]{y=t^{ 2 }e^{ 1-t }}$$
解:
(一)$$a_{ 0 }=\frac { 1 }{ 2\pi } \int _{ -\pi }^{ \pi }{ x^{ 2 }\, dx } =\frac { 1 }{ 2\pi } \left. \left[ \frac { 1 }{ 3 } x^{ 3 } \right] \right| _{ -\pi }^{ \pi }=\frac { 1 }{ 2\pi } \times \frac { 2 }{ 3 } \pi ^{ 3 }=\frac { \pi ^{ 2 } }{ 3 } \\ a_{ n }=\frac { 1 }{ \pi } \int _{ -\pi }^{ \pi }{ x^{ 2 }\cos { \left( nx \right) } \, dx } =\frac { 1 }{ \pi } \left. \left[ \frac { x^{ 2 } }{ n } \sin { \left( nx \right) } +\frac { 2x }{ n^{ 2 } } \cos { \left( nx \right) } -\frac { 2 }{ n^{ 3 } } \sin { \left( nx \right) } \right] \right| _{ -\pi }^{ \pi }\\ =\frac { 1 }{ \pi } \left[ \frac { 4\pi }{ n^{ 2 } } \cos { \left( n\pi \right) } \right] =\frac { 4 }{ n^{ 2 } } \cdot { \left( -1 \right) }^{ n }\\ b_{ n }=0\left( \because x^{ 2 }是偶函數,\sin 是奇函數 \right) \\ f\left( x \right) =\bbox[red,2pt]{\frac { \pi ^{ 2 } }{ 3 } +\sum _{ n=1 }^{ \infty }{ \frac { 4 }{ n^{ 2 } } \cdot { \left( -1 \right) }^{ n }\cdot \cos { \left( nx \right) } } }$$(二)$$\text{由 Plancherel/Parseval } 定理\Rightarrow \sum_{n=-\infty}^{\infty}|a_n|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\left|f(x)\right|^2dx\\
\Rightarrow \left(\frac{\pi^2}{3}\right)^2+2\times\sum_{n=-\infty}^{\infty}\left(\frac{2}{n^2}\cdot (-1)^n\right)^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}x^4dx\\
\Rightarrow \frac{\pi^4}{9}+2\times\sum_{n=-\infty}^{\infty}{\frac{4}{n^4}}=\frac{\pi^4}{5}\Rightarrow 8\times\sum_{n=-\infty}^{\infty}{\frac{1}{n^4}}=\frac{\pi^4}{5}-\frac{\pi^4}{9}=\frac{4\pi^4}{45}\\
\Rightarrow \sum_{n=-\infty}^{\infty}{\frac{1}{n^4}}=\bbox[red,2pt]{\frac{\pi^4}{90}}$$
解:
(一)5張牌都是紅桃的情形共有\(C^{13}_5\),其它三種花色都有相同情形,因此52張取5張都是同花色的機率為\(\bbox[red,2pt]{4\times\frac{C^{13}_5}{C^{52}_5}}\);
(二)5張牌中都沒有Aces的機率為\(\frac{C^{48}_5}{C^{52}_5}\);只有1張Aces的機率為\(\frac{C^4_1C^{48}_4}{C^{52}_5}\);取出2張或更多Aces的機率為\(\bbox[red,2pt]{1-\frac{C^{48}_5}{C^{52}_5}-\frac{C^4_1C^{48}_4}{C^{52}_5}}\)
解:$$M為skew-symmetric\Rightarrow M^{ T }=-M\Rightarrow \left[ \begin{matrix} 0 & a & b \\ 1 & 0 & c \\ 2 & 3 & 0 \end{matrix} \right] =\left[ \begin{matrix} 0 & -1 & -2 \\ -a & 0 & -3 \\ -b & -c & 0 \end{matrix} \right] \\ \Rightarrow \begin{cases} a=-1 \\ b=-2 \\ c=-3 \end{cases},故選\bbox[red,2pt]{(C)}$$
解:$$\left( 2xy^{ 3 }-3y \right) dx-\left( 3x-3x^{ 2 }y^{ 2 }+6y \right) dy=0\\ 令M\left( x,y \right) =2xy^{ 3 }-3y,N\left( x,y \right) =-\left( 3x-3x^{ 2 }y^{ 2 }+6y \right) \\ \Rightarrow \frac { d }{ dy } M\left( x,y \right) =6xy^{ 2 }-3=\frac { d }{ dx } N\left( x,y \right) \\ \Rightarrow \Psi \left( x,y \right) =\int { M\left( x,y \right) dx } +f\left( y \right) =\int { N\left( x,y \right) dy } +g\left( x \right) \\ \Rightarrow \Psi \left( x,y \right) =x^{ 2 }y^{ 3 }-3xy+f\left( y \right) =x^{ 2 }y^{ 3 }-3xy+3y^{ 2 }+g\left( x \right) \\ \Rightarrow \Psi \left( x,y \right) =x^{ 2 }y^{ 3 }-3xy+3y^{ 2 }=K\\ ,故選\bbox[red,2pt]{(C)}$$
解:$$\left[\begin{array}{ccc}1&-2&3\\2&-5&1\\1&-4&-7\end{array}\right]\xrightarrow{(-1)r_1+r_3,(-2)r_1+r_2}\left[\begin{array}{ccc}1&-2&3\\0&-1&-5\\0&-2&-10\end{array}\right]\xrightarrow{(-2)r_2+r_3}\left[\begin{array}{ccc}1&-2&3\\0&-1&-5\\0&0&0\end{array}\right],故選\bbox[red,2pt]{(B)}$$
解:$$\frac { { e }^{ 0 } }{ 0^{ 2 }+1 } =\frac { 1 }{ 1 } =1,故選\bbox[red,2pt]{(C)}$$
解:$$A=\left[ \begin{matrix} 3 & 0 \\ -4 & 0 \\ 0 & -1 \end{matrix} \right] \Rightarrow x_{ 1 }=\left[ \begin{matrix} 3 \\ -4 \\ 0 \end{matrix} \right] ,x_{ 2 }=\left[ \begin{matrix} 0 \\ 0 \\ -1 \end{matrix} \right] \\ y_{ 1 }=x_{ 1 }=\left[ \begin{matrix} 3 \\ -4 \\ 0 \end{matrix} \right] \Rightarrow \left\| y_{ 1 } \right\| =5\\ y_{ 2 }=x_{ 2 }-\frac { y_{ 1 }^{ T }x_{ 2 } }{ { \left\| y_{ 1 } \right\| }^{ 2 } } y_{ 1 }=x_{ 2 }=\left[ \begin{matrix} 0 \\ 0 \\ -1 \end{matrix} \right] \Rightarrow \left\| y_{ 2 } \right\| =1\\ \Rightarrow q_{ 1 }=\frac { y_{ 1 } }{ \left\| y_{ 1 } \right\| } =\frac { 1 }{ 5 } \left[ \begin{matrix} 3 \\ -4 \\ 0 \end{matrix} \right] ,q_{ 2 }=\frac { y_{ 2 } }{ \left\| y_{ 2 } \right\| } =\left[ \begin{matrix} 0 \\ 0 \\ -1 \end{matrix} \right] \\ \Rightarrow Q=\left[ \begin{matrix} 3/5 & 0 \\ -4/5 & 0 \\ 0 & -1 \end{matrix} \right] ,R=\left[ \begin{matrix} \left\| y_{ 1 } \right\| & q_{ 1 }^{ T }x_{ 2 } \\ 0 & \left\| y_{ 2 } \right\| \end{matrix} \right] =\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix} \right] \\ \Rightarrow a=5,b=0,c=1\Rightarrow a-b-c=5-1=4,故選\bbox[red,2pt]{(C)} $$
解:$$\left[\begin{array}{cccc}2&1&6&0\\1&1&3&-1\\1&2&3&-3\\-3&2&-9&-7\end{array}\right]\xrightarrow{(-2)r_2+r_1,(-1)r_2+r_3,3r_2+r_4}\left[\begin{array}{cccc}0&-1&0&2\\1&1&3&-1\\0&1&0&-2\\0&5&0&-10\end{array}\right]\\
\xrightarrow{r_3+r_1,(-5)r_3+r_4}\left[\begin{array}{cccc}0&0&0&0\\1&1&3&-1\\0&1&0&-2\\0&0&0&0\end{array}\right]\xrightarrow{-r_3+r_2}\left[\begin{array}{cccc}0&0&0&0\\1&0&3&1\\0&1&0&-2\\0&0&0&0\end{array}\right]\Rightarrow \begin{cases}x_2=2x_4\\x_1+3x_3=-x_4\end{cases}\\
\Rightarrow \left[\begin{matrix}x_1\\x_2\\x_3\\x_4\end{matrix}\right]=s \left[\begin{matrix}1 \\0\\-1/3\\0\end{matrix}\right]+t\left[\begin{matrix}0 \\2\\-1/3\\1\end{matrix}\right],s,t\in R\\
\left[\begin{matrix}-3 \\0\\1\\0\end{matrix}\right]=-3\left[\begin{matrix}1 \\0\\-1/3\\0\end{matrix}\right],\left[\begin{matrix}-1 \\2\\0\\1\end{matrix}\right]=-1\left[\begin{matrix}1 \\0\\-1/3\\0\end{matrix}\right]+\left[\begin{matrix}0 \\2\\-1/3\\1\end{matrix}\right],故選\bbox[red,2pt]{(A)}$$
解:$$\frac { z+1 }{ z^{ 3 }-2z^{ 2 } } =\frac { z+1 }{ z^{ 2 }\left( z-2 \right) } \Rightarrow z=0,2為奇異點且皆在圓內\\ \Rightarrow \oint _{ C }{ \frac { z+1 }{ z^{ 2 }\left( z-2 \right) } \, dz } =\oint _{ C }{ f\left( z \right) \, dz } =2\pi i\left( Res_{ z=2 }f(z)+Res_{ z=0 }f(z) \right) \\ =2\pi i\left( \left. \frac { z+1 }{ z^{ 2 } } \right| _{ z=2 }+\left. \frac { d }{ dz } \left( \frac { z+1 }{ z-2 } \right) \right| _{ z=0 } \right) =2\pi i\left( \frac { 3 }{ 4 } +\left. \left( \frac { -3 }{ { \left( z-2 \right) }^{ 2 } } \right) \right| _{ z=0 } \right) \\ =2\pi i\left( \frac { 3 }{ 4 } -\frac { 3 }{ 4 } \right) =0,故選\bbox[red,2pt]{(D)}$$
解:$$\left( A \right) \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] \xrightarrow { -4r_{ 1 }+r_{ 2 },-7r_{ 1 }+r_{ 3 } } \left[ \begin{matrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{matrix} \right] \xrightarrow { -2r_{ 2 }+r_{ 3 } } \left[ \begin{matrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{matrix} \right] \\ \Rightarrow 只有兩個獨立向量\\ \left( B \right) 只有兩個獨立向量\\ \left( C \right) 基底只需要3個獨立向量,故選\bbox[red,2pt]{(D)}$$
解:$$A=P^{ -1 }\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{matrix} \right] P\Rightarrow A^{ 50 }=P^{ -1 }\left[ \begin{matrix} 1^{ 50 } & 0 & 0 \\ 0 & (-1)^{ 50 } & 0 \\ 0 & 0 & (-1)^{ 50 } \end{matrix} \right] P\\ =P^{ -1 }\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] P=P^{ -1 }P=I,故選\bbox[red,2pt]{(C)}$$
解:$$z=3+2i\Rightarrow \frac { \bar { z } }{ z } =\frac { 3-2i }{ 3+2i } =\frac { { \left( 3-2i \right) }^{ 2 } }{ \left( 3+2i \right) \left( 3-2i \right) } =\frac { 5-12i }{ 13 } \\ \Rightarrow Im\left( \frac { \bar { z } }{ z } \right) =Im\left( \frac { 5-12i }{ 13 } \right) =-\frac { 12 }{ 13 } ,故選\bbox[red,2pt]{(B)}$$
解:$$u=xy\Rightarrow u'=xy'+y\Rightarrow xy'+y=\sin { x } \Rightarrow u'=\sin { x } \Rightarrow du=\sin { x } dx\Rightarrow u=-\cos { x } +c\\ \Rightarrow xy=-\cos { x } +c\Rightarrow y=\frac { -\cos { x } +c }{ x } ,故選\bbox[red,2pt]{(A)}$$
解:$$(D) y_2=3x=3\cdot x=3y_1,故選\bbox[red,2pt]{(D)}$$
解:$$y''+y'+1=2\Rightarrow \begin{cases} y_{ h }=C_{ 1 }e^{ -\lambda _{ 1 }t }+C_{ 2 }e^{ -\lambda _{ 2 }t }+\cdots \\ y_{ p }=2 \end{cases}\Rightarrow y=a\left( t \right) =y_{ h }+y_{ p }\\ \Rightarrow \lim _{ t\rightarrow \infty }{ a\left( t \right) } =\lim _{ t\rightarrow \infty }{ \left( y_{ h }+y_{ p } \right) } =\lim _{ t\rightarrow \infty }{ \left( 2+C_{ 1 }e^{ -\lambda _{ 1 }t }+C_{ 2 }e^{ -\lambda _{ 2 }t }+\cdots \right) } =2,故選\bbox[red,2pt]{(B)}$$
解:$$y=\sum _{ n=0 }^{ \infty }{ C_{ n }x^{ n+r } } =C_{ 0 }x^{ r }+C_{ 1 }x^{ r+1 }+C_{ 2 }x^{ r+2 }+\cdots \\ \Rightarrow y'=C_{ 0 }rx^{ r-1 }+C_{ 1 }(r+1)x^{ r }+C_{ 2 }(r+2)x^{ r+1 }+\cdots \\ \Rightarrow y''=C_{ 0 }r(r-1)x^{ r-2 }+C_{ 1 }(r+1)rx^{ r-1 }+C_{ 2 }(r+2)(r+1)x^{ r }+\cdots \\ \Rightarrow { x }^{ 2 }y''=C_{ 0 }r(r-1)x^{ r }+C_{ 1 }(r+1)rx^{ r+1 }+C_{ 2 }(r+2)(r+1)x^{ r+2 }+\cdots \\ \Rightarrow \begin{cases} xy=C_{ 0 }x^{ r+1 }+C_{ 1 }x^{ r+2 }+C_{ 2 }x^{ r+3 }+\cdots \\ \frac { 1 }{ 2 } y=\frac { 1 }{ 2 } C_{ 0 }x^{ r }+\frac { 1 }{ 2 } C_{ 1 }x^{ r+1 }+\frac { 1 }{ 2 } C_{ 2 }x^{ r+2 }+\cdots \\ \left( x-\frac { 1 }{ 2 } \right) y=-\frac { 1 }{ 2 } C_{ 0 }x^{ r }+\left( C_{ 0 }-\frac { 1 }{ 2 } C_{ 1 } \right) x^{ r+1 }+\left( C_{ 1 }-\frac { 1 }{ 2 } C_{ 2 } \right) x^{ r+2 }+\cdots \end{cases}\\ \Rightarrow \begin{cases} \frac { 1 }{ 2 } xy'=\frac { 1 }{ 2 } C_{ 0 }rx^{ r }+\frac { 1 }{ 2 } C_{ 1 }(r+1)x^{ r+1 }+\frac { 1 }{ 2 } C_{ 2 }(r+2)x^{ r+2 }+\cdots \\ 2{ x }^{ 2 }y'=2C_{ 0 }rx^{ r+1 }+2C_{ 1 }(r+1)x^{ r+2 }+2C_{ 2 }(r+2)x^{ r+3 }+\cdots \\ x\left( \frac { 1 }{ 2 } +2x \right) y'=\frac { 1 }{ 2 } C_{ 0 }rx^{ r }+\left( 2C_{ 0 }r+\frac { 1 }{ 2 } C_{ 1 }(r+1) \right) x^{ r+1 }+\left( 2C_{ 1 }(r+1)+\frac { 1 }{ 2 } C_{ 2 }(r+2) \right) x^{ r+2 }+\cdots \end{cases}\\ \Rightarrow x^{ 2 }y''+x\left( \frac { 1 }{ 2 } +2x \right) y'+\left( x-\frac { 1 }{ 2 } \right) y=\left( C_{ 0 }r(r-1)-\frac { 1 }{ 2 } C_{ 0 }+\frac { 1 }{ 2 } C_{ 0 }r \right) x^{ r }+\left( C_{ 1 }(r+1)+C_{ 0 }-\frac { 1 }{ 2 } C_{ 1 }+2C_{ 0 }r+\frac { 1 }{ 2 } C_{ 1 }(r+1) \right) x^{ r+1 }+\\ \quad \quad \left( C_{ 2 }(r+2)(r+1)+C_{ 1 }-\frac { 1 }{ 2 } C_{ 2 }+2C_{ 1 }(r+1)+\frac { 1 }{ 2 } C_{ 2 }(r+2) \right) x^{ r+2 }+\cdots \\ \Rightarrow C_{ 0 }r(r-1)-\frac { 1 }{ 2 } C_{ 0 }+\frac { 1 }{ 2 } C_{ 0 }r=0\Rightarrow r^{ 2 }-r-\frac { 1 }{ 2 } +\frac { 1 }{ 2 } r=r^{ 2 }-\frac { 1 }{ 2 } r-\frac { 1 }{ 2 } =0,故選\bbox[red,2pt]{(A)}$$
解:$$x''\left( t \right) +4x\left( t \right) =f\left( t \right) \Rightarrow L\left\{ x''\left( t \right) \right\} +4L\left\{ x\left( t \right) \right\} =L\left\{ f\left( t \right) \right\} \\ \Rightarrow s^{ 2 }L\left\{ x\left( t \right) \right\} -sx\left( 0 \right) -x'\left( 0 \right) +4L\left\{ x\left( t \right) \right\} =\frac { s\left( 1-{ e }^{ -2\pi s } \right) }{ s^{ 2 }+4 } \\ \Rightarrow \left( s^{ 2 }+4 \right) L\left\{ x\left( t \right) \right\} =\frac { s\left( 1-{ e }^{ -2\pi s } \right) }{ s^{ 2 }+4 } \Rightarrow L\left\{ x\left( t \right) \right\} =\frac { s\left( 1-{ e }^{ -2\pi s } \right) }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } =\frac { s }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } -\frac { s{ e }^{ -2\pi s } }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } \\ \Rightarrow x\left( t \right) =L^{ -1 }\left\{ \frac { s }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } \right\} -L^{ -1 }\left\{ \frac { s{ e }^{ -2\pi s } }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } \right\} =L^{ -1 }\left\{ \frac { 1 }{ 4 } \cdot -\frac { d }{ ds } \frac { 2 }{ s^{ 2 }+{ 2 }^{ 2 } } \right\} -L^{ -1 }\left\{ \frac { s{ e }^{ -2\pi s } }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } \right\} \\ =\frac { 1 }{ 4 } t\sin { \left( 2t \right) } -L^{ -1 }\left\{ { e }^{ -2\pi s }\cdot \frac { s }{ { \left( s^{ 2 }+4 \right) }^{ 2 } } \right\} =\frac { 1 }{ 4 } t\sin { \left( 2t \right) } -\frac { 1 }{ 4 } \left( t-2\pi \right) \sin { \left( 2\left( t-2\pi \right) \right) } u\left( t-2\pi \right) \\ \Rightarrow x\left( \frac { 9\pi }{ 4 } \right) =\frac { 1 }{ 4 } \cdot \frac { 9\pi }{ 4 } \sin { \left( \frac { 9\pi }{ 2 } \right) } -\frac { 1 }{ 4 } \frac { \pi }{ 4 } \sin { \left( \frac { \pi }{ 2 } \right) } =\frac { 9\pi }{ 16 } -\frac { \pi }{ 16 } =\frac { \pi }{ 2 } ,故選\bbox[red,2pt]{(D)}$$
解:白努利方程式需以\(u=y^{1-a}\)作變數變換求解,故選\(\bbox[red,2pt]{(B)}\)
解:$$a_{ 0 }=\frac { 1 }{ 2\pi } \int _{ -\pi }^{ \pi }{ f\left( x \right) dx } =\frac { 1 }{ 2\pi } \int _{ 0 }^{ \pi }{ \pi dx } =\frac { \pi ^{ 2 } }{ 2\pi } =\frac { \pi }{ 2 } \\ a_{ n }=\frac { 1 }{ \pi } \int _{ -\pi }^{ \pi }{ f\left( x \right) \cos { \left( nx \right) } dx } =\int _{ 0 }^{ \pi }{ \cos { \left( nx \right) } dx } =0\\ b_{ n }=\frac { 1 }{ \pi } \int _{ -\pi }^{ \pi }{ f\left( x \right) \sin { \left( nx \right) } dx } =\int _{ 0 }^{ \pi }{ \sin { \left( nx \right) } dx } =\left. \left[ -\frac { 1 }{ n } \cos { \left( nx \right) } \right] \right| _{ 0 }^{ \pi }\\ =-\frac { 1 }{ n } \cos { \left( n\pi \right) } +\frac { 1 }{ n } =\frac { 1 }{ n } \left( 1-{ \left( -1 \right) }^{ n } \right) \\ \Rightarrow f\left( x \right) =a_{ 0 }+\sum _{ n=1 }^{ \infty }{ \left( a_{ n }\cos { \left( nx \right) } +b_{ n }\sin { \left( nx \right) } \right) } =\frac { \pi }{ 2 } +\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ n } \left( 1-{ \left( -1 \right) }^{ n } \right) \sin { \left( nx \right) } } ,故選\bbox[red,2pt]{(D)}$$
解:$$P\left( X\le 1\mid X\le 3 \right) =\frac { P\left( X\le 1 \right) 且P\left( X\le 3 \right) }{ P\left( X\le 3 \right) } =\frac { P\left( X\le 1 \right) }{ P\left( X\le 3 \right) } =\frac { F\left( 1 \right) }{ F\left( 3 \right) } \\ =\frac { \frac { 2 }{ 7 } -\frac { 1 }{ 7 } }{ \frac { 15 }{ 7 } -\frac { 9 }{ 14 } -\frac { 11 }{ 14 } } =\frac { \frac { 1 }{ 7 } }{ \frac { 10 }{ 14 } } =\frac { 1 }{ 5 } ,故選\bbox[red,2pt]{(B)} $$
解:$$\sum _{ x=1 }^{ 2 }{ \sum _{ y=1 }^{ 3 }{ cxy^{ 2 } } } =1\Rightarrow c\left( 1+4+9+2+8+18 \right) =42c=1\Rightarrow c=\frac { 1 }{ 42 } \\ \Rightarrow p_{ X }(x)=\sum _{ y=1 }^{ 3 }{ cxy^{ 2 } } =cx\left( 1+4+9 \right) =14cx=14\times \frac { 1 }{ 42 } x=\frac { x }{ 3 } \\ \Rightarrow E\left[ X \right] =\sum _{ x=1 }^{ 2 }{ xp_{ X }(x) } =\frac { 1 }{ 3 } +2\times \frac { 2 }{ 3 } =\frac { 5 }{ 3 } ,故選\bbox[red,2pt]{(B)} $$
解:
公正骰子出現任何點數的機率皆為\(1/6\),因此\(E[X]=4\times\frac{1}{6}=\frac{2}{3}\),而\(E[X^2]= 4\times\frac{1}{6}=\frac{2}{3}\)。則\(Var(X)=E[X^2]-(E[X])^2=\frac{2}{3}-\frac{4}{9} =\frac{2}{9}\),故選\(\bbox[red,2pt]{(C)}\)
沒有留言:
張貼留言