2020年5月28日 星期四

109年 警專39期甲組數學科詳解




:$${2a+b \over 2} \ge \sqrt{2a\times b} =\sqrt{2\times 18} =6 \Rightarrow 2a+b\ge 12,故選\bbox[red, 2pt]{(B)}$$


:$$x=\sqrt 3-1 \Rightarrow (x+1)^2=(\sqrt 3)^2 \Rightarrow x^2+2x-2=0\\ 利用長除法: f(x)=x^4+3x^3-x+2 = (x^2+2x-2)(x^2+x)+x+2 \\ \Rightarrow f(\sqrt 3-1) =0\times (x^2+x)+x+2= x+2 = (\sqrt 3-1)+2 =\sqrt 3+1,故選\bbox[red,2pt]{(C)}$$


:$$x=1+i \Rightarrow (x-1)^2=i^2 \Rightarrow x^2-2x+2=0\\ 利用長除法: f(x)=x^4-x^3+ax = (x^2-2x+2)(x^2+x)+(a-2)x \\ 餘式為0 \Rightarrow (a-2)x =0 \Rightarrow a=2 ,故選\bbox[red,2pt]{(A)}$$


:$$\log_{0.1}\left(\log_3(x+2) \right)有意義 \Rightarrow \cases{x+2>0\\ \log_3(x+2)>0} \Rightarrow \cases{x>-2 \\ x+2> 1 \Rightarrow x>-1} \Rightarrow x>-1\\,故選\bbox[red,2pt]{(A)}$$


:$$此題相當於求兩圖形\cases{y=\log_2|x| \\y=2^x}有幾個交點;\\由於y=\log_2 x與y=2^x對稱於x=y,兩者沒有交點;\\ 而y=\log_2|x|對稱於Y軸,在第二象限有一個交點,故選\bbox[red,2pt]{(B)}$$


:$$\log ({1\over 3})^{50} =50(-\log 3) =- 50\times 0.4771 =-23.855\Rightarrow 在小數點第23+1=24位不為0\\,故選\bbox[red,2pt]{(B)}$$



:$$三個骰子的點數和為8的情形:(1,1,6),(1,2,5),(1,3,4),(2,2,4),(2,3,3);\\各組的排列數分別為3,3!,3!,3,3,總排列數為21,因此機率為 {21\over 6^3} = {7 \over 72},故選\bbox[red,2pt]{(B)}$$


:$$由上題可知點數和為8有21種情形,其中至少出現一次2的情形有(1,2,5),(2,2,4),(2,3,3),\\排列數為6+3+3=12;\\因此{點數和為8 且至少出現一次\over 點數和為8} ={12\over 21}={4\over 7},故選\bbox[red,2pt]{(無解)}$$



:$$餘弦定理: \cos \theta={5^2+6^2-7^2 \over 2\times 5\times 6}={1\over 5} \Rightarrow \sin \theta ={2\sqrt 6\over 5};\\再由正弦定理: {7\over {2\sqrt 6\over 5}}=2R \Rightarrow R= {35 \over 4\sqrt 6}= {35\sqrt 6 \over 24},故選\bbox[red,2pt]{(C)}$$





$$餘弦定理: \cos A=\cos 120^\circ={3^2+6^2-\overline{BC}^2 \over 2\times 3\times 6} \Rightarrow -{1\over 2} ={45- \overline{BC}^2 \over 36} \Rightarrow \overline{BC}=3\sqrt 7\\ \overline{AE} 平分\angle A \Rightarrow {\overline{BE} \over \overline{EC}} = {\overline{AB} \over \overline{AC}} ={3\over 6} \Rightarrow \overline{BE}={1\over 3}\overline{BC}= \sqrt 7\\ 再由餘弦定理: \cos \angle EAB=\cos 60^\circ={3^2+\overline{AE}^2-(\sqrt 7)^2 \over 2\times 3\times \overline{AE}} \Rightarrow {1\over 2}={2+\overline{AE}^2 \over 6\overline{AE}} \Rightarrow \overline{AE}=2或1\\,故選\bbox[red,2pt]{(D)}$$



:$$\cos \theta+\cos 2\theta=0 \Rightarrow \cos\theta +2\cos^2\theta -1=0 \Rightarrow \cos \theta =\cases{1/2\\ -1} \Rightarrow \sin \theta= \cases{\sqrt 3/2 \\ 0} \\ \Rightarrow \tan \theta =\cases{\sqrt 3\\ 0},故選\bbox[red,2pt]{(A)}$$




$$令\cases{\overline{BC}=a \\\overline{AC}=b},D在\overline{AB}上,且\overline{CD}\bot \overline{AB},如上圖;\\ \cases{\overline{AD}= b\cos \angle BAC ={12\over 13}b\\ \overline{DB}= a\cos \angle ABC ={3\over 5}a} \Rightarrow \overline{AB}= \overline{AD} +\overline{DB}  \Rightarrow 126={12\over 13}b +{3\over 5}a\cdots(1)\\ 正弦定理:{a \over \sin \angle BAC} ={b \over \sin \angle ABC} \Rightarrow {a\over 5/13}={b \over 4/5} \Rightarrow b={52 \over 25}a\;代人(1) \\\Rightarrow {3\over 5}a+{12\over 13}\times{52\over 25}a=126 \Rightarrow {63\over 25}a=126 \Rightarrow a={126\times 25 \over 63} =50,故選\bbox[red, 2pt]{(A)}$$



:$$\cases{ax+y=2 的斜率為-a\\ x-3y=1的斜率為1/3} \Rightarrow (-a)\times {1\over 3}=-1 \Rightarrow a=3,故選\bbox[red, 2pt]{(B)}$$



:$$\cases{A(2,2)\\ 圓心O(0,-2)} \Rightarrow \overrightarrow{OA}=(2,4) \Rightarrow 過A且法向量為(2,4)的直線為2(x-2)+4(y-2)=0\\,即x+2y=6,故選\bbox[red, 2pt]{(C)}$$




:$$\cases{\overline{BD}:\overline{DC}=2:3 \Rightarrow \overrightarrow{AD}={2\over 5}\overrightarrow{AC} +{3\over 5}\overrightarrow{AB} \\ P為\overline{AD}中點\Rightarrow \overrightarrow{AP}= {1\over 2}\overrightarrow{AD}} \Rightarrow \overrightarrow{AP}= {1\over 2}\left( {2\over 5}\overrightarrow{AC} +{3\over 5}\overrightarrow{AB}\right) \\={1\over 5}\overrightarrow{AC} +{3\over 10}\overrightarrow{AB} \Rightarrow \cases{x=3/10\\y =1/5} \Rightarrow x+y=1/2,故選\bbox[red,2pt]{(D)}$$


:$$(\vec a-\vec b)\cdot (\vec a-\vec b)=|\vec a|^2-2\vec a\cdot \vec b+|\vec b|^2 \Rightarrow 25=4-2\vec a\cdot \vec b+16 \Rightarrow \vec a\cdot \vec b=-{5\over 2} \Rightarrow \cos \theta ={\vec a\cdot \vec b \over |\vec a||\vec b|}\\ ={-5/2 \over 8} =-{5\over 16},故選\bbox[red,2pt]{(無解)}$$



:$$\cases{\vec a=(x,3) \\ \vec b=(2k,4k)} \Rightarrow {\vec a\cdot \vec b \over |\vec b|^2}\times \vec b=(2,4) \Rightarrow {2kx+12k \over 20k^2}(2k,4k)= (2,4) \Rightarrow 6+x=10 \Rightarrow x=4\\,故選\bbox[red,2pt]{(D)}$$



:$$L:{x-1\over 2}={y+2\over 3} ={z\over 4} \Rightarrow L上的點可表示成(2t+1,3t-2,4t),與A(2,3,3)的距離為: \\ \sqrt{(2t-1)^2+ (3t-5)^2+(4t-3)^2} = \sqrt{29t^2-58t+35} \Rightarrow 當t=1時,距離有最小值\\ \Rightarrow 投影點為(2+1,3-2,4)=(3,1,4),故選\bbox[red,2pt]{(A)}$$





:$$\begin{array}{cccr}abc & 組合數(x) & a+b+c(y) & x\times y\\\hline 122 & 1 & 5 & 5 \\ 123 & 6 & 6 & 36\\ 124 & 8 & 7 & 56\\ 133 & 3 & 7 & 21 \\ 134 & 12 & 8 & 96 \\144 & 6 & 9 & 54\\ 223 & 3 & 7 & 21\\ 224 & 4 & 8 & 32\\ 233 & 6 & 8 & 48\\ 234 & 24 & 9 & 216\\ 244 & 12 & 10 & 120\\ 333 & 1 & 9 & 9 \\ 334 & 12 & 10& 120 \\ 344 & 18 & 11 & 198 \\ 444 & 4 & 12 & 48\\\hline &\sum & 120 & 1080\end{array} \Rightarrow 期望值={1080\over 120} =9,故選\bbox[red, 2pt]{(C)}$$



:恰有一次正面的情形:(正、負、負),(負,正,負)及(負,負,正),三種情形的機率和為\(3\times p\times (1-p)^2=4/9 \Rightarrow p=1/3\),故選\(\bbox[red,2pt]{(C)}\)



:$$\cases{\sin {\pi \over 3}=\sin {2\pi \over 3} =\sin 2.09 ={\sqrt 3\over 2}=0.866 \\ \sin{\pi \over 4}= \sin{3\pi \over 4} =\sin 2.35 ={\sqrt 2\over 2} =0.707} \Rightarrow \sin 2.4 最接近0.7,故選\bbox[red,2pt]{(A)}$$




:$$f(x)=\sin x-3\cos x=\sqrt{10}({1\over \sqrt{10}}\sin x-{3\over \sqrt{10}}\cos x) \\\Rightarrow 當{1\over \sqrt{10}}\sin x-{3\over \sqrt{10}}\cos x= -1時,f(x)有最小值-\sqrt{10},此時\cases{\sin x=-{1\over \sqrt{10}} \\ \cos x={3\over \sqrt{10}}},故選\bbox[red,2pt]{(C)}$$


:$$令\cases{A(0,1)\\ B(-1,0)},則滿足|z-i|=|z+1|的z,相當於\overline{AB}的中垂線上的P(x,y);\\而|z-2-2i|的最小值即P至(2,2)的最短距離;\\由P(x,y)=(t,-t) \Rightarrow \text{dis}(P,(2,2))= \sqrt{(2-t)^2+(2+t)^2}=\sqrt{2t^2+8} \\\Rightarrow 當t=0時,有最小值\sqrt 8=2\sqrt 2,故選\bbox[red,2pt]{(B)}。$$


:$$z=-2+ai \Rightarrow |z|=\sqrt{a^2+4} \Rightarrow |z|\cos {7\pi \over 6}=-2 \Rightarrow \sqrt{a^2+4}(-{\sqrt 3\over 2})=-2 \\ \Rightarrow \sqrt{a^2+4}={4\over \sqrt 3} \Rightarrow a^2={4\over 3} \Rightarrow a=-{2\over \sqrt 3}(正值不合),故選\bbox[red,2pt]{(無解)}$$


:$$\omega = \cos{4\pi \over 5}+i\sin{4\pi \over 5} \Rightarrow \omega^5=1 \Rightarrow \omega^3+\omega^4 +\cdots +\omega^{16} = {\omega^3-\omega^{17}\over 1-\omega}= {\omega^3-(\omega^{5})^3\omega^2\over 1-\omega}\\ ={\omega^3- \omega^2 \over 1-\omega} ={-\omega^2(1-\omega) \over 1-\omega} =-\omega^2,故選\bbox[red,2pt]{(A)}$$



:$$f(x)=x(x-1)(x-2)(x-3) =(x^2-x)(x^2-5x+6)\\\Rightarrow f'(x)= (2x-1)(x^2-5x+6)+(x^2-x)(2x-5) \Rightarrow f'(3)=0+(9-3)(6-5)=6\\,故選\bbox[red,2pt]{(D)}$$


:$$ f(x)在x=1有極小值2 \Rightarrow f(1)=2 \Rightarrow 1+a+b+5=2 \Rightarrow a+b=-4,故選\bbox[red,2pt]{(無解)}$$


:$$\int_1^5|x-3|\;dx = \left| \int_1^3 x-3\;dx\right|+\left| \int_3^5 x-3\;dx\right| =2+2=4,故選\bbox[red,2pt]{(B)}$$



:$$先求交點,令f(x)=g(x) \Rightarrow 3x^2=x^3 \Rightarrow x^2(x-3)=0 \Rightarrow 交點位於x=0,x=3;\\ 因此所圍區域面積= \left| \int_0^3 f(x)-g(x)\;dx\right| = \left| \int_0^3 3x^2-x^3\;dx\right|= \left| \left. \left[x^3-{1\over 4}x^4\right]\right |_0^3\right|\\=27-{81\over 4}={27\over 4},故選\bbox[red, 2pt]{(C)}$$


:$$f(x)=\int_0^x (3x^2-2t)\;dt = x^3-x^2 \Rightarrow f'(x)=3x^2-2x \Rightarrow f''(x)=6x-2 \\ 令f''(x)=0 \Rightarrow 6x-2=0 \Rightarrow x=1/3 \Rightarrow f(1/3)= 1/27-1/9= -2/27\\ \Rightarrow 反曲點位於(1/3,-2/27) \Rightarrow \bbox[red, 2pt]{(無解)}$$




:$$|x-2|+|x+2|的最小值為4,因此只要k\ge 4即合乎條件,故選\bbox[red, 2pt]{(CDE)}$$



:$$f為偶函數\Rightarrow f(x)=f(-x) \Rightarrow ax^4+bx^3+cx^2+dx+e =ax^4-bx^3+cx^2-dx+e \\ \Rightarrow \cases{b=-b\\ d=-d} \Rightarrow b=d=0,故選\bbox[red,2pt]{(BD)}$$



:$$x^2+y^2-6x-6y+13=0 \Rightarrow (x-3)^2+(y-3)^2=5 \Rightarrow \cases{圓心O(3,3)\\ 半徑r=\sqrt 5}\\ 圓心至直線3x-4y+4=0的距離= \left|{ 9-12+4\over \sqrt {3^2+4^2}} \right| = {\sqrt 5\over 5} < r \Rightarrow 直線與圓交兩點\\ \Rightarrow P至該直線的距離x介於0與r+{\sqrt 5\over 5} 之間,即0\le x \le \sqrt 5+{\sqrt 5\over 5} \Rightarrow x=0,1,2,故選\bbox[red,2pt]{(ABC)}$$




:$$y=\tan x的週期為\pi\\(A)\bigcirc: \sin x的週期為2\pi\Rightarrow \sin (2x)的週期為\pi \\(B) \times:\cos x的週期為2\pi\Rightarrow \cos (x/2)的週期為4\pi \\(C) \times: y=2\sin x的週期與y=\sin x相同,皆是2\pi \\(D)\times: y=2\sec x的週期與y=\sec x相同,皆是2\pi \\(E) \bigcirc: y=\cot x的週期與y=\tan x相同\\故選\bbox[red,2pt]{(AE)}$$



:$$(A)\bigcirc: \cases{A=\left[\matrix{a & b\\ c& d}\right] \\B=\left[\matrix{e& f\\ g& h}\right]} \Rightarrow \cases{A+B= \left[\matrix{a+e & b+f\\ c+g& d+h}\right] \\B+A= \left[\matrix{e+a & f+b\\ g+c& h+d}\right]} \Rightarrow A+B=B+A\\ (B)\times: \cases{A=\left[\matrix{0 & 1\\ 1& 1}\right] \\B=\left[\matrix{1& 0\\ 0& 0}\right]} \Rightarrow \cases{AB= \left[\matrix{0 & 0\\ 1& 0}\right] \\BA=\left[\matrix{0& 1\\ 0& 0}\right]} \Rightarrow AB \ne -BA\\(C)\times: (A+B)(A-B)=A^2-AB+BA-B^2 \ne A^2-B^2 (\because AB不一定等於BA)\\(D)\bigcirc: \cases{A=\left[\matrix{a_{11} & a_{12}\\ a_{21} & a_{22}}\right] \\B=\left[\matrix{b_{11} & b_{12}\\ b_{21} & b_{22}}\right] \\C=\left[\matrix{c_{11} & c_{12}\\ c_{21} & c_{22}}\right]} \Rightarrow \cases{B+C= \left[\matrix{b_{11}+c_{11} & b_{12}+c_{12}\\ b_{21}+c_{21} & b_{22}+c_{22}} \right] \\AB= \left[\matrix{a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22}\\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} }\right] \\AC = \left[\matrix{a_{11}c_{11}+a_{12}c_{21} & a_{11}c_{12}+a_{12}c_{22}\\ a_{21}c_{11}+a_{22}c_{21} & a_{21}c_{12}+a_{22}c_{22} }\right]} \\\qquad \Rightarrow AB+AC= \left[\matrix{a_{11}(b_{11}+c_{11})+ a_{12}(b_{21}+c_{21}) &a_{11}(b_{12}+c_{12})+ a_{12}(b_{22}+c_{22}) \\a_{21}(b_{11}+c_{11}) +a_{22}(b_{21}+c_{21}) & a_{21}(b_{12}+c_{12}) +a_{22}(b_{22}+c_{22})} \right]\\\qquad =A(B+C)\\(E)\times: \cases{A=\left[\matrix{1& 0\\ 0& 1}\right] \\B=\left[\matrix{-1& 0\\ 0& 1}\right]} \Rightarrow \cases{A^2=\left[\matrix{1& 0\\ 0& 1}\right] \\B^2=\left[\matrix{1& 0\\ 0& 1}\right]} \Rightarrow A^2=B^2,但A\ne \pm B\\,故選\bbox[red, 2pt]{(AD)}$$


:$$(A)\times: 三點需不在同一直線上\\(D)\times: 該定點需不在該直線上\\其他皆正確,故選\bbox[red,2pt]{(BCE)}$$


:$$y=[x]圖形在x為整數時不連續,因此y=x[x]也不連續,故選\bbox[red,2pt]{(ACDE)}$$


:$$(A)\bigcirc: \lim_{n\to \infty} \sum_{k=1}^n ({1\over 2})^k =\lim_{n\to \infty} {{1\over 2}-{1\over 2^{k+1}}\over 1-{1\over 2}} =\lim_{n\to \infty} (1-{1\over 2^k})=1 \\(B) \times: y=(1+{1\over n})^n \Rightarrow \log y=n\log(1+{1\over n}) \Rightarrow \lim_{n\to \infty}n\log(1+{1\over n}) = \lim_{n\to \infty}{\log(1+{1\over n})\over 1/n}\\ = \lim_{n\to \infty}{(\log(1+{1\over n}))'\over (1/n)'} = \lim_{n\to \infty}{{1\over 1+{1\over n}}\cdot (-1/n^2)\over -1/n^2} = \lim_{n\to \infty}{1\over 1+{1\over n}}=1 \Rightarrow \lim_{n\to \infty}(1+{1\over n})^n=e^1 \\(C) \bigcirc: \lim_{n\to \infty}{7^n+3^n\over 7^n-3^n} =\lim_{n\to \infty}{1+(3/7)^n\over 1-(3/7)^n}=1 \\(D)\times: \sum_{k=1}^n{1\over n}\left(1+{k \over n}\right)^2 ={1\over n}\sum_{k=1}^n\left(1+{2k\over n}+ {k^2\over n^2} \right) ={1\over n}\left( n+{n(n+1) \over n} + {n(n+1)(2n+1)\over 6n^2} \right) \\ =1+{n(n+1) \over n^2} + {n(n+1)(2n+1)\over 6n^3} \Rightarrow \lim_{n \to \infty} \sum_{k=1}^n{1\over n}\left(1+{k \over n}\right)^2 =1+1+{1\over 3}= {7\over 3} \\(E)\times: \lim_{n\to \infty}{n+2\over n^2+2n+1} =\lim_{n\to \infty}{1+2/n\over n+2+1/n} =0\\,故選\bbox[red,2pt]{(AC)}$$


:$$(A)\bigcirc: {a\over \sin A}= {b\over \sin B}={c\over \sin C}=2R \Rightarrow \cases{\sin A=a/2R \\ \sin B=b/2R \\ \sin C= c/2R},二邊之和大於第三邊\Rightarrow a+b> c\\ \qquad \Rightarrow {a+b \over 2R} > {c\over 2R} \Rightarrow \sin A+\sin B >\sin C\\(B)\times: 若A=B=C=60^\circ \Rightarrow \cases{\cos A+\cos B=1/2+1/2=1\\ \cos C=1/2} \cos A+\cos B \not < \cos C \\(C)\times: \sin A={1\over 2} \Rightarrow \angle A=30^\circ\;或\;150^\circ \\(D) \bigcirc: cos A={1\over 2} \Rightarrow \angle A= 60^\circ\;或300^\circ(不合)\\(E)\times: {a\over \sin A}= {b\over \sin B}={c\over \sin C}=2R \Rightarrow \cases{a=2R\sin A\\ b=2R\sin B\\ c=2R\sin C};\\\qquad 若\cases{a < R \\ b < R\\ c < R} \Rightarrow \cases{2R\sin A < R\\ 2R\sin B < R\\ 2R\sin C < R} \Rightarrow \cases{\sin A<1/2 \\ \sin B< 1/2 \\ \sin C< 1/2} \Rightarrow \cases{\angle A< 30^\circ \\\angle B< 30^\circ \\\angle C< 30^\circ }\\\qquad,但\angle A+\angle B+\angle C=180^\circ,所以不可能發生\triangle 三邊長皆小於外接圓半徑,故選\bbox[red,2pt]{(AD)}$$


:$$(A)\bigcirc: \lim_{x\to 0}|x|= 0 \\(B)\times: \cases{\lim_{x\to 0+} {|x|\over x}=1 \\ \lim_{x\to 0-} {|x|\over x}=-1} \lim_{x\to 0} {|x|\over x}不收斂 \\(C)\times: 分母為0,\lim_{x\to 0}{|x|\over x^2}不存在 \\(D)\bigcirc: \lim_{x\to 1}{|x| \over x} =1 \\(E) \times: 分母為0,\lim_{x\to 0}{|x+1|\over x}不存在\\,故選\bbox[red,2pt]{(AD)}$$

今年送分五題......

-- END --

沒有留言:

張貼留言