109學年度指定科目考試試題
數學甲
第壹部分:選擇題一、單選題
解:
45∘<θ<50∘⇒{sinθ>√22>cosθ>0tanθ>1{a=1−cos2θ=sin2θ>12⇒12<a<1b=1cosθ−cosθ=1−cos2θcosθ=acosθ>ac=tanθtan2θ+1=12sin2θ=sinθcosθ<sinθsinθ=a⇒a>c⇒b>a>c,故選(5)
2.有A,B兩個箱子,其中A箱有6顆白球與4顆紅球,B箱有8顆白球與2顆藍球。現
有三種抽獎方式(各箱中每顆球被抽取的機率相同):
(一)先在A箱中抽取一球,若抽中紅球則停止,若抽到白球則再從B箱中抽取一球;
(二)先在B箱中抽取一球,若抽中藍球則停止,若抽到白球則再從A箱中抽取一球;
(三)同時分別在A,B箱中各抽取一球。
給獎方式為:在紅、藍這兩種色球當中,若只抽到紅球得50元獎金;若只抽到藍球得100元獎金;若兩種色球都抽到,則仍只得100元獎金;若都沒抽到,則無獎金。將上列(一)、(二)、(三)這3種抽獎方式所得獎金的期望值分別記為E1、E2、E3, 試 選 出 正 確 的 選 項 。(1)E1>E2>E3(2)E1=E2>E3(3)E2=E3>E1(4)E1=E3>E2(5)E3>E2>E1
方式過程機率獎金期望值(一)A箱抽中紅球4/105020A箱抽中白球,B箱抽中白球610×81000A箱抽中白球,B箱抽中藍球610×21010012(二)B箱抽中藍球21010020B箱抽中白球,A箱抽中白球810×61000B箱抽中白球,A箱抽中紅球810×4105016(三)A箱抽中白球,B箱抽中白球610×81000A箱抽中白球,B箱抽中藍球610×21010012A箱抽中紅球,B箱抽中白球410×8105016A箱抽中紅球,B箱抽中藍球410×2101008⇒{E1=20+12=32E2=20+16=36E3=12+16+8=36⇒E2=E3>E1,故選(3)
解:

(1)×:{A=(1,0)B=(−1,0)⇒→OA+→OB=(1,0)+(−1,0)=(0,0)=→O(2)×:{A=(−3,0)B=(1,0)⇒{→OC1=(−2,0)→OC2=(−1,0)→OC3=(0,0)⇒¯OC1>¯OC2>¯OC3(3)×:同(2){→OA=(−3,0)→OC1=(−2,0)→OC2=(−1,0)→OC3=(0,0)⇒{→OA⋅→OC1=6→OA⋅→OC2=3→OA⋅→OC3=0⇒→OA⋅→OC1>→OA⋅→OC2>→OA⋅→OC3(4)◯:{→OC1=→OA+→OB→OC2=→OA+2→OB→OC3=→OA+3→OB⇒{→OC1⋅→OB=→OA⋅→OB+|→OB|2→OC2⋅→OB=→OA⋅→OB+2|→OB|2→OC3⋅→OB=→OA⋅→OB+3|→OB|2⇒→OC1⋅→OB<→OC2⋅→OB<→OC3⋅→OB(5)◯:→OC3−→OC1→OC2−→OC1=2→OB→OB=常數⇒C1,C2,C3在一直線上,故選(4,5)
(1)◯:依[a]定義,滿足a−1<[a]≤a(2)×:nθ−1<[nθ]≤nθ⇒nθ−1n<[nθ]n≤nθn⇒θ−1n<[nθ]n≤θ⇒limn→∞(θ−1n)<limn→∞[nθ]n≤limn→∞θ⇒θ<limn→∞[nθ]n≤θ⇒limn→∞bn=θ⇒bn收斂(3)×:−nθ−1<[−nθ]≤−nθ⇒−nθ−1n<[−nθ]n≤−nθn⇒−θ−1n<[−nθ]n≤−θ⇒limn→∞(−θ−1n)<limn→∞[−nθ]n≤limn→∞(−θ)⇒−θ<limn→∞[−nθ]n≤−θ⇒limn→∞cn=−θ⇒cn收斂(4)×:limn→∞n[θn]=limn→∞[θn]1/n=limn→∞([θn])′(1/n)′=limn→∞0−1/n2=0⇒limn→∞dn=0⇒dn收斂。註:([x])′={0,如果x不是整數未定義,如果x是整數(5)◯:limn→∞n[−θn]=limn→∞n×limn→∞[−θn]=∞×(−1)=−∞⇒en發散,故選(1,5)
z=\cos \theta+ i\sin \theta \Rightarrow z+1=(1+\cos\theta) +i\sin \theta,由於|z+1|=1 \Rightarrow (1+\cos \theta)^2+ \sin^2\theta=1 \\ \Rightarrow 2+2\cos \theta=1 \Rightarrow \cos\theta =-{1\over 2} \Rightarrow \theta=\cases{2\pi/3 \\ 4\pi/4} \Rightarrow z=\cases{\cos (2\pi/3) +i\sin (2\pi/3)\\ \cos (4\pi/3) +i\sin (4\pi/3)} \\ \Rightarrow z=\cases{-1/2+i\sqrt 3/2 \equiv A\\ -1/2-i\sqrt 3/2\equiv A'}\\ (1)\bigcirc: 由題意知B在A的右方且兩點皆在單位圓上,因此有兩種情況(如上圖),\overline{AB}與實數軸平行;\\(2) \times: \triangle OAB 為為等腰非直角\triangle \\(3)\times: A可能在第二象限,也可能在第三象限\\ (4)\bigcirc: z=\cases{\cos (2\pi/3) +i\sin (2\pi/3)\\ \cos (4\pi/3) +i\sin (4\pi/3)}\Rightarrow z^3= \cases{\cos 2\pi +i\sin 2\pi=1\\ \cos 4\pi+i\sin 4\pi =1} \Rightarrow z^3=1\\(5)\bigcirc: z=A(如上圖) \Rightarrow {1\over z}=A' \Rightarrow 1+A'=B'仍在同一單位圓上\\故選\bbox[red,2pt]{(1,4,5)}
解:
(1)\times: 鏡射即對稱,只有一種;且\cases{A^3=A\\ A^2=I}\\ (2)\bigcirc: 旋轉矩陣B=\left[ \matrix{\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta} \right] \Rightarrow B^3= \left[ \matrix{\cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta} \right] =\left[ \matrix{-1 & 0 \\ 0 & -1} \right] \\ \Rightarrow 3\theta = \pi\pm 2k\pi,k\in Z \Rightarrow \theta={\pi \over 3} \pm {2\over 3}k\pi \Rightarrow \theta= {\pi \over 3},\pi, {5\over 3}\pi,...\\ \Rightarrow B=\begin{cases}\left[ \matrix{1/2 & -\sqrt 3/2 \\ \sqrt 3/2 & 1/2 } \right]=B_1, & \theta={\pi \over 3} \\\left[ \matrix{-1 & 0 \\ 0 & -1 } \right]=B_2, & \theta={3 \over 3}\pi \\\left[ \matrix{1/2 & \sqrt 3/2 \\ -\sqrt 3/2 & 1/2 } \right]=B_3, & \theta={5 \over 3}\pi \end{cases} \Rightarrow 共有三種 \\(3)\times:\cases{A=\left[ \matrix{0 & -1 \\ -1 & 0 } \right] \\B=B_1= \left[ \matrix{1/2 & -\sqrt 3/2 \\ \sqrt 3/2 & 1/2 } \right]} \Rightarrow \cases{AB= \left[ \matrix{-\sqrt 3/2 & -1/2 \\ -1/2 & \sqrt 3/2 } \right]\\BA= \left[ \matrix{\sqrt 3/2 & -1/2 \\ -1/2 & -\sqrt 3/2 } \right]} \Rightarrow AB\ne BA \\(4) \times: \cases{det(A)=-1 \\ det(B)=1} \Rightarrow det(AB)=det(A)det(B)=-1 \Rightarrow AB代表某種鏡射不是旋轉 \\(5)\bigcirc: \cases{AB_1AB_1=I\\ AB_2AB_2=I\\ AB_3AB_3=I} \Rightarrow ABAB=I\\,故選 \bbox[red, 2pt]{(2,5)}
(1)\times: 鏡射即對稱,只有一種;且\cases{A^3=A\\ A^2=I}\\ (2)\bigcirc: 旋轉矩陣B=\left[ \matrix{\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta} \right] \Rightarrow B^3= \left[ \matrix{\cos 3\theta & -\sin 3\theta \\ \sin 3\theta & \cos 3\theta} \right] =\left[ \matrix{-1 & 0 \\ 0 & -1} \right] \\ \Rightarrow 3\theta = \pi\pm 2k\pi,k\in Z \Rightarrow \theta={\pi \over 3} \pm {2\over 3}k\pi \Rightarrow \theta= {\pi \over 3},\pi, {5\over 3}\pi,...\\ \Rightarrow B=\begin{cases}\left[ \matrix{1/2 & -\sqrt 3/2 \\ \sqrt 3/2 & 1/2 } \right]=B_1, & \theta={\pi \over 3} \\\left[ \matrix{-1 & 0 \\ 0 & -1 } \right]=B_2, & \theta={3 \over 3}\pi \\\left[ \matrix{1/2 & \sqrt 3/2 \\ -\sqrt 3/2 & 1/2 } \right]=B_3, & \theta={5 \over 3}\pi \end{cases} \Rightarrow 共有三種 \\(3)\times:\cases{A=\left[ \matrix{0 & -1 \\ -1 & 0 } \right] \\B=B_1= \left[ \matrix{1/2 & -\sqrt 3/2 \\ \sqrt 3/2 & 1/2 } \right]} \Rightarrow \cases{AB= \left[ \matrix{-\sqrt 3/2 & -1/2 \\ -1/2 & \sqrt 3/2 } \right]\\BA= \left[ \matrix{\sqrt 3/2 & -1/2 \\ -1/2 & -\sqrt 3/2 } \right]} \Rightarrow AB\ne BA \\(4) \times: \cases{det(A)=-1 \\ det(B)=1} \Rightarrow det(AB)=det(A)det(B)=-1 \Rightarrow AB代表某種鏡射不是旋轉 \\(5)\bigcirc: \cases{AB_1AB_1=I\\ AB_2AB_2=I\\ AB_3AB_3=I} \Rightarrow ABAB=I\\,故選 \bbox[red, 2pt]{(2,5)}
解:
\cases{x-3y-5z=0 \cdots(1)\\ x-3y+2z=0 \cdots(2) \\ x+y=t\cdots(3)},由(1)及(2)可得\cases{z=0 \\x-3y=0 \cdots(4)} \\由(3)及(4) 可得\cases{x=3t/4\\ y=t/4} \Rightarrow P({3t\over 4}, {t\over 4}) \Rightarrow \overline{OP}=10 = \sqrt{{9t^2 \over 16} +{t^2\over 16}} \Rightarrow 100= {10t^2\over 16} \Rightarrow t^2=160 \\ \Rightarrow t= \bbox[red, 2pt]{4\sqrt{10}} (負值不合,違反t>0)
\cases{x-3y-5z=0 \cdots(1)\\ x-3y+2z=0 \cdots(2) \\ x+y=t\cdots(3)},由(1)及(2)可得\cases{z=0 \\x-3y=0 \cdots(4)} \\由(3)及(4) 可得\cases{x=3t/4\\ y=t/4} \Rightarrow P({3t\over 4}, {t\over 4}) \Rightarrow \overline{OP}=10 = \sqrt{{9t^2 \over 16} +{t^2\over 16}} \Rightarrow 100= {10t^2\over 16} \Rightarrow t^2=160 \\ \Rightarrow t= \bbox[red, 2pt]{4\sqrt{10}} (負值不合,違反t>0)
解:
三點\cases{A(1,1) \\ B(x,y) \\ P(4,2)}共圓,且\cases{\overline{AB}為直徑 \\\overline{BP}=3\sqrt{10} }\Rightarrow \cases{ \overrightarrow{PA} \cdot \overrightarrow{PB}= (-3,-1)\cdot (x-4,y-2)=0 \\ (x-4)^2+(y-2)^2=90\cdots (1)} \\ \Rightarrow -3x+12-y+2=0 \Rightarrow y=14-3x 代入(1) \Rightarrow (x-4)^2+(3x-12)^2=90 \\ \Rightarrow x^2-8x+7=0 \Rightarrow (x-7)(x-1)=0 \Rightarrow x=\cases{1\\ 7} \Rightarrow y=\cases{11 \\ -7} \\ \Rightarrow \bbox[red, 2pt]{B(7,-7)} (B(1,11)不合,違反B在第4象限)
解:
\cases{O(0,0,0)\\ 觀景台P(0,0,150)\\ A(m,n,0) \\ B(p,q,0) \\ C({m+p\over 2},{n+q\over 2})} \Rightarrow \cases{\overrightarrow{PO}=(0,0.-150) \\\overrightarrow{PA} =(m,n,-150) \\ \overrightarrow{PB} =(p,q,-150) \\\overrightarrow{PC} =({m+p\over 2},{n+q\over 2},-150) \\} \Rightarrow \cases{\cos (90^\circ-30^\circ) ={\overrightarrow{PA} \cdot \overrightarrow{PO} \over |\overrightarrow{PA}||\overrightarrow{PO}|} \\\cos (90^\circ-60^\circ) ={\overrightarrow{PB} \cdot \overrightarrow{PO} \over |\overrightarrow{PB}||\overrightarrow{PO}|} \\\cos (90^\circ-45^\circ) ={\overrightarrow{PC} \cdot \overrightarrow{PO} \over |\overrightarrow{PC}||\overrightarrow{PO}|}} \\ \Rightarrow \cases{\cos 60^\circ = {(m,n,-150) \cdot (0,0,-150) \over \sqrt{m^2+n^2+150^2} \times 150} ={1\over 2}\\ \cos 30^\circ = {(p,q,-150) \cdot (0,0,-150) \over \sqrt{p^2+q^2+150^2} \times 150} ={\sqrt 3\over 2} \\\cos 45^\circ = {((m+p)/2,(n+q)/2,-150) \cdot (0,0,-150) \over \sqrt{{(m+p)^2\over 4}+ {(n+q)^2 \over 4}+150^2} \times 150} ={\sqrt 2 \over 2}} \Rightarrow \cases{m^2+n^2= 67500 \\ p^2+q^2=7500 \\ (m+p)^2 +(n+q)^2=90000} \\ \Rightarrow 2mp+2nq = 90000-67500-7500 =15000 \Rightarrow mp+nq=7500 \\ \triangle OAB面積={1\over 2}\sqrt{|\overrightarrow{OA}|^2|\overrightarrow{OB}|^2- (\overrightarrow{OA} \cdot \overrightarrow{OB})^2} = {1\over 2}\sqrt{(m^2+n^2)(p^2+q^2)-(mp+nq)^2} \\ ={1\over 2}\sqrt{67500\times 7500-7500^2} ={1\over 2}\sqrt{45\times 10^7} ={1000\over 2}\sqrt{450} =500\sqrt{15^2\times 2} =\bbox[red, 2pt]{7500\sqrt 2}
\cases{O(0,0,0)\\ 觀景台P(0,0,150)\\ A(m,n,0) \\ B(p,q,0) \\ C({m+p\over 2},{n+q\over 2})} \Rightarrow \cases{\overrightarrow{PO}=(0,0.-150) \\\overrightarrow{PA} =(m,n,-150) \\ \overrightarrow{PB} =(p,q,-150) \\\overrightarrow{PC} =({m+p\over 2},{n+q\over 2},-150) \\} \Rightarrow \cases{\cos (90^\circ-30^\circ) ={\overrightarrow{PA} \cdot \overrightarrow{PO} \over |\overrightarrow{PA}||\overrightarrow{PO}|} \\\cos (90^\circ-60^\circ) ={\overrightarrow{PB} \cdot \overrightarrow{PO} \over |\overrightarrow{PB}||\overrightarrow{PO}|} \\\cos (90^\circ-45^\circ) ={\overrightarrow{PC} \cdot \overrightarrow{PO} \over |\overrightarrow{PC}||\overrightarrow{PO}|}} \\ \Rightarrow \cases{\cos 60^\circ = {(m,n,-150) \cdot (0,0,-150) \over \sqrt{m^2+n^2+150^2} \times 150} ={1\over 2}\\ \cos 30^\circ = {(p,q,-150) \cdot (0,0,-150) \over \sqrt{p^2+q^2+150^2} \times 150} ={\sqrt 3\over 2} \\\cos 45^\circ = {((m+p)/2,(n+q)/2,-150) \cdot (0,0,-150) \over \sqrt{{(m+p)^2\over 4}+ {(n+q)^2 \over 4}+150^2} \times 150} ={\sqrt 2 \over 2}} \Rightarrow \cases{m^2+n^2= 67500 \\ p^2+q^2=7500 \\ (m+p)^2 +(n+q)^2=90000} \\ \Rightarrow 2mp+2nq = 90000-67500-7500 =15000 \Rightarrow mp+nq=7500 \\ \triangle OAB面積={1\over 2}\sqrt{|\overrightarrow{OA}|^2|\overrightarrow{OB}|^2- (\overrightarrow{OA} \cdot \overrightarrow{OB})^2} = {1\over 2}\sqrt{(m^2+n^2)(p^2+q^2)-(mp+nq)^2} \\ ={1\over 2}\sqrt{67500\times 7500-7500^2} ={1\over 2}\sqrt{45\times 10^7} ={1000\over 2}\sqrt{450} =500\sqrt{15^2\times 2} =\bbox[red, 2pt]{7500\sqrt 2}
(1)y=ax+b 過C(3,2)與D(4,0) \Rightarrow \cases{2=3a+b \\ 0=4a+b} \Rightarrow \bbox[red, 2pt]{\cases{a=-2 \\ b=8}}(2)由題意知:y=f(x)經過A(0,0)及D(4,0),即\cases{f(0)=0\\ f(4)=0},因此x=0,4為f(x)=0的解;\\ 又f(x)為三次式,所以 f(x)=x(x-4)(px+q) \Rightarrow f(x)可被x(x-4)=x^2-4x所整除。(3)同(1)可求得過A(0,0)及B(1,4)的切線方程式y=4x,因此兩切線方程式為\cases{L_1: y=4x\\ L_2:y=-2x+8}\\ \Rightarrow \cases{斜率m_1= 4\\ 斜率m_2=-2} \Rightarrow \cases{f'(0)=4 \\ f'(4)=-2};\\由(2)知f(x)=x(x-4)(px+q) = px^3+(q-4p)x^2-4qx \Rightarrow f'(x)=3px^2+2(q-4p)x -4q\\ \Rightarrow f'(0)=-4q=4 \Rightarrow q=-1 \Rightarrow f'(x)= 3px^2 + 2(-1-4p)x+4 \\\Rightarrow f'(4)=48p +8(-1-4p)+4=-2 \Rightarrow p=1/8 \Rightarrow \bbox[red, 2pt]{f(x)={1\over 8}x^3-{3\over 2}x^2+4x}(4)f(x)=x(x-4)({1\over 8}x-1) = {1\over 8}x^3-{3\over 2}x^2+4x \Rightarrow \int_2^6 |8f(x)|dx = 8\left( \left|\int_2^4f(x)dx \right|+ \left|\int_4^6 f(x)dx \right| \right) \\ =8\left( \left|\left. \left[ {1\over 32}x^4 -{1\over 2}x^3 +2x^2 \right] \right|_2^4 \right|+ \left|\left. \left[ {1\over 32}x^4 -{1\over 2}x^3 +2x^2 \right] \right|_4^6 \right| \right) =8\left(|8-{9\over 2}| + | {9\over 2}-8|\right)\\ =8\times 7 =\bbox[red, 2pt]{56}
解:
(1)\cases{C(0,1,0)\\ G(0,1,1)} \Rightarrow P=(C+G)/2 =\bbox[red,2pt]{(0,1,{1\over 2})}(2) \overline{BQ}=t \Rightarrow Q(1,1,t) \Rightarrow \overrightarrow{QP}=(-1,0,{1\over 2}-t);\\由於AQPR為平行四邊形\Rightarrow \overrightarrow{AR} =\overrightarrow{QP}=\bbox[red,2pt]{(-1,0,{1\over 2}-t)} (3)四角錐體積={1\over 3}|(\overrightarrow{AR}\times \overrightarrow{AQ})\cdot \overrightarrow{PG}| = {1\over 3}|((-1,0, {1\over 2}-t)\times (0,1,t))\cdot (0,0,{1\over 2})| \\ ={1\over 3}|(t-{1\over 2},t,-1)\cdot (0,0,{1\over 2})| ={1\over 3} \cdot {1\over 2}= \bbox[red, 2pt]{1\over 6}為一定值,與t無關(4)由(3)知: \text{dist}(G,E)= \left|{2t-1 \over \sqrt{2t^2+1}} \right| ={|-{1\over 2}| \over \sqrt{{1\over 8}+1}} ={1/2 \over \sqrt{9/8}} ={1/2 \over 3/2\sqrt 2} =\bbox[red, 2pt]{\sqrt 2\over 3}
-- END (僅供參考) --
老師
回覆刪除有沒有考慮提供,109數甲補考的詳解 謝謝
已經貼上了!
刪除請問第五題的解法中(4)使用了L'Hopital rule,但同樣的方法在(5)中使用會適用嗎?
回覆刪除因為(4)分子分母都趨近於0,適用羅必達,而(5)並沒有分子分母都為0或無窮大的情形,不適用羅必達!!
刪除您好
回覆刪除非選題的第二大題的第(2)、(3)詳解有誤
謝謝提醒,已修訂完畢
刪除請問非選第二大題的(3)
回覆刪除為何是dot PQ向量?
應該是PG,打錯字了,謝謝提醒!!
刪除第六題第三個選項好像有打錯,應該是1/3X^3+1/2X^2+C
回覆刪除你看得真仔細,已修訂,謝謝
刪除