110 學年度身心障礙學生升學大專校院甄試
甄試類(群)組別: 四技二專組-數學(S)
解答:$$互相垂直兩直線的斜率之積為-1,故選\bbox[red,2pt]{(C)}$$解答:$$1,4,7為等差\Rightarrow a_1=1,公差d=3 \Rightarrow a_{1001}=a_1+ 1000d = 1+1000\times 3=3001,故選\bbox[red,2pt]{(C)}$$
解答:$$2020^\circ = 360^\circ \times 5+220^\circ ,又220^\circ = 220\times {2\pi \over 360}={11\over 9}\pi,故選\bbox[red,2pt]{(A)}$$
解答:$$3x+2y=6 通過(0,3)及(2,0) \Rightarrow 不通過第三象限,故選\bbox[red,2pt]{(C)}$$
解答:$$f(x)=x^3-2x^2+3x-4= a(x-1)^3+b(x-1)^2+c(x-1) +d \\ \Rightarrow f(2)=8-8+6-4=2=a+b+c+d,故選\bbox[red,2pt]{(A)}$$
解答:$$f(x)=2x^{109}+3x^{108} +109x+108 \Rightarrow f(-1)=-2+3-109+108=0,故選\bbox[red,2pt]{(B)}$$
解答:$$x^3+2x^2-4x-8 =(x-\alpha)(x-\beta)(x-\gamma) \Rightarrow \alpha+\beta+\gamma = -2,故選\bbox[red,2pt]{(A)}$$
解答:
$$由上圖可知,兩圖形交集不含第二象限,故選\bbox[red,2pt]{(B)}$$
解答:$$3\sin \theta=2 \Rightarrow \sin \theta ={2\over 3} \Rightarrow \csc \theta = {1\over \sin \theta}={3\over 2},故選\bbox[red,2pt]{(C)}$$
解答:$$\overline{BC}^2 = \overline{AC}^2-\overline{AB}^2 =x^2-1 \Rightarrow \overline{BC}=\sqrt{x^2-1} \Rightarrow \tan \theta = {1\over \sqrt{x^2-1}},故選\bbox[red,2pt]{(B)}$$
解答:$$5^2=(-2-1)^2+(4-x)^2 \Rightarrow 4-x=\pm 4 \Rightarrow x=8或0,故選\bbox[red,2pt]{(D)}$$
解答:$$x^2+y^2-4x-6y-12=0 \Rightarrow (x-2)^2+(y-3)^2=5^2 \Rightarrow 半徑=5,故選\bbox[red,2pt]{(D)}$$
解答:
解答:$$3\sin \theta=2 \Rightarrow \sin \theta ={2\over 3} \Rightarrow \csc \theta = {1\over \sin \theta}={3\over 2},故選\bbox[red,2pt]{(C)}$$
解答:$$\overline{BC}^2 = \overline{AC}^2-\overline{AB}^2 =x^2-1 \Rightarrow \overline{BC}=\sqrt{x^2-1} \Rightarrow \tan \theta = {1\over \sqrt{x^2-1}},故選\bbox[red,2pt]{(B)}$$
解答:$$5^2=(-2-1)^2+(4-x)^2 \Rightarrow 4-x=\pm 4 \Rightarrow x=8或0,故選\bbox[red,2pt]{(D)}$$
解答:$$x^2+y^2-4x-6y-12=0 \Rightarrow (x-2)^2+(y-3)^2=5^2 \Rightarrow 半徑=5,故選\bbox[red,2pt]{(D)}$$
解答:
$$C_1與C_2為同心圓,半徑分別為2及1,圓心皆在O(0,-1);\\由於d(O,L)={1\over \sqrt 2}\lt 1 \Rightarrow L與小圓交於兩點,與大圓也交於兩點,故選\bbox[red,2pt]{(D)}$$
解答:$$20\cos 30^\circ = 20\times {\sqrt 3\over 2}\approx 17.3,故選\bbox[red,2pt]{(D)}$$
解答:$$2000\times \sin 30^\circ + 100\times \sin 45^\circ = 1000+50\sqrt 2 \approx 1070.7,故選\bbox[red,2pt]{(A)}$$
解答:$$3種書的排列數=3!=6,國文兩本可交換,數學也可交換,因此共有6\times 2\times 2=24種排法\\,故選\bbox[red,2pt]{(B)}$$
解答:$$男生選1位有C^3_1=3種選法,女生選1位有C^2_1=2種選法\\,因此剛好是1男1女的機率為{3\times 2\over C^5_2} ={6\over 10}=0.6,故選\bbox[red,2pt]{(C)}$$
解答:$$\sigma(X)=8 \Rightarrow \sigma(2X-4)= 2\sigma(X)=16,故選\bbox[red,2pt]{(D)}$$
解答:$$2^{-x}({1\over 4})^28^{-3}16^4 = 2^{-x}2^{-4}2^{-9}2^{16}= 2^{-x+3} =2^5 \Rightarrow x=-2,故選\bbox[red,2pt]{(A)}$$
解答:$$\log a=3 \Rightarrow a=10^3 \Rightarrow 10=a^{1\over 3}\Rightarrow 10^{4\over 3}=(a^{1/3})^{4/3} =a^{4\over 9},故選\bbox[red,2pt]{(B)}$$
解答:$$20\cos 30^\circ = 20\times {\sqrt 3\over 2}\approx 17.3,故選\bbox[red,2pt]{(D)}$$
解答:$$2000\times \sin 30^\circ + 100\times \sin 45^\circ = 1000+50\sqrt 2 \approx 1070.7,故選\bbox[red,2pt]{(A)}$$
解答:$$3種書的排列數=3!=6,國文兩本可交換,數學也可交換,因此共有6\times 2\times 2=24種排法\\,故選\bbox[red,2pt]{(B)}$$
解答:$$男生選1位有C^3_1=3種選法,女生選1位有C^2_1=2種選法\\,因此剛好是1男1女的機率為{3\times 2\over C^5_2} ={6\over 10}=0.6,故選\bbox[red,2pt]{(C)}$$
解答:$$\sigma(X)=8 \Rightarrow \sigma(2X-4)= 2\sigma(X)=16,故選\bbox[red,2pt]{(D)}$$
解答:$$2^{-x}({1\over 4})^28^{-3}16^4 = 2^{-x}2^{-4}2^{-9}2^{16}= 2^{-x+3} =2^5 \Rightarrow x=-2,故選\bbox[red,2pt]{(A)}$$
解答:$$\log a=3 \Rightarrow a=10^3 \Rightarrow 10=a^{1\over 3}\Rightarrow 10^{4\over 3}=(a^{1/3})^{4/3} =a^{4\over 9},故選\bbox[red,2pt]{(B)}$$
沒有留言:
張貼留言