Processing math: 68%

2021年3月6日 星期六

106年興大附中教甄-數學詳解

 國立中興大學附屬高級中學106學年度第1次教師甄選

解答{a=3+2b=32{a2=5+26b2=526ab=1{a4=49+206b4=49206a2b2=1a6+b6=(a2)3+(b2)3=(a2+b2)(a4+b4a2b2)=10(981)=9700<b2<1969<a6<970a6=970
解答ABC{¯BC=a¯AC=ak¯AB=a2kcosA=12=(ak)2+(a2k)2a22(ak)(a2k)2a29ak+7k2=0(2a7k)(ak)=0a=72k(a=k¯AC=ak=0,){¯BC=7k/2¯AC=5k/2¯AB=3k/2=7:5:3
解答


Γ:y=2xAA(x,2x){P(1,4)Q(2,5)4x5×2x+1+x24x+294x2x+3+x22x+17=(x2)2+(2x5)2(x1)2+(2x4)2=¯AQ¯AP=¯PQ=2

解答{a=log36=12(log33+log32)=12(1+log32)b=log32<12a1=b2a=(b2+1)/2log36+log32+log36log32=a+bab=b2+12+b+b2+12b=12(b+1)2+12(b1)2=12(b+1)+12(1b)=22=2
解答
logx+y1x2>logx+yy{1x2>0y>0x+y>0{1x2>y, if x+y>11x2<y, if x+y<1{:x+y>1x2+y2<1:0<x+y<1x2+y2>1x>1{=π412=12+(1π4)÷2=12+π8

解答{A(0,0,0)B(6,0,0)C(3,62,0)O(3,a,b){¯OA=9¯OC=6{9+a2+b2=9(a62)2+b2=6{a=9/2b=37/2OABC=13×ABC×=13×(12×6×62)×372=187
解答|z|=1z=cosθ+isinθ|z2z+1|=|z(z1+1z)|=|z||z1+1z|=|z1+1z|=|cosθ+isinθ1+cos(θ)+isin(θ)|=|2cosθ1|{M=3if cosθ=1m=0if cosθ=1M+m=3
解答(k1)n+(1)n×(k1)=(31)12+(1)12(31)=212+2=4098
解答{x2+(z1)2=1y=0P(cosθ,0,sinθ+1)Q(0,2,2):xcosθ=y22=z2sinθ1xy(z=0)xcosθ=y22=2sinθ1{2x=(y2)cosθ(y2)(sinθ1)=4{cosθ=2xy2sinθ=y+2y2cos2θ+sin2θ=4x2+(y+2)2(y2)2=1x2+2y=0z=0
解答f(n)=nk=11(2k)(2k1)=nk=1(12k112k)=112+1314++12n112n=(1+13+15++12n1)(12+14++12n)=(1+12+13+14+15++12n1+12n)2(12+14++12n)=(1+12+13+14+15++12n1+12n)(1+12+13++1n)=1n+1+1n+2++12n=nk=11n+k=nk=11n(1+k/n)limnf(n)=1011+xdx=ln(1+x)|10=ln2
解答:A=12[cos2πnsin2πnsin2πncos2πn]Ak=12k[cos2kπnsin2kπnsin2kπncos2kπn]{Pk=Ak1[10]=12k1[cos2(k1)πnsin2(k1)πn]Pk+1=Ak[10]=12k[cos2kπnsin2kπn]Sk=1212k1cos2(k1)πn12k1sin2(k1)πn12kcos2kπn12ksin2kπn=122ksin2πnlimn(n×nk=1Sk)=limnnsin2πn(122+124++122n)=2πlimnsin2π/n2π/n×limn22n13×22n=2π×13=2π3
解答:令\cases{a=x \ge 0\\ b=2y\ge 0\\ c=3z\ge 0},則此變為:已知a+b+c=1,求a^2b +b^2c +c^2a的最大值\\ 假設a\ge b\ge c,則\cases{ac \ge bc\\ b\ge c} \Rightarrow abc+bc^2 \ge ac^2+b^2c \text{ (Rearrangement inequality) } \\ \Rightarrow  a^2b +b^2c +c^2a \le a^2b+ abc+bc^2  = b(a^2+ac+c^2) \le b(a+c)^2 \le 4\left({{a+c\over 2} +{a+c\over 2} +b \over 3} \right)^3 \\=4({a+b+c \over 3})^3 ={4\over 27} \Rightarrow a^2b +b^2c +c^2a的最大值為\bbox[red,2pt]{4\over 27}
解答:
假設\cases{f(x)=cx(1-x)\\ g(x)=x\\   \Omega_1(綠色區域)= y=f(x)與y=g(x)所圍區域面積 };\\先求兩圖形交點,即cx(1-x)=x \Rightarrow cx^2+(1-c)x=0 \Rightarrow x(cx+1-c)=0 \Rightarrow x=0,1-{1\over c}\\ 令交點\cases{O(0,0)\\ A(1-{1\over c},1-{1\over c})} \Rightarrow \cases{\Omega_1=\int_0^{1-1/c} f(x)-g(x)\;dx ={1\over 2}(1-{1\over c})^2(c-1)-{1\over 3}c(1-{1\over c})^3\\\Omega_c=  \int_{0}^1 f(x)\;dx ={1\over 6}c}\\ \Omega_1= {1\over 2}\Omega_c \Rightarrow {1\over 2}(1-{1\over c})^2(c-1)-{1\over 3}c(1-{1\over c})^3={c\over 12} \Rightarrow {1\over 2}(1-{1\over c})^3 -{1\over 3}(1-{1\over c})^3={1\over 12} \\ \Rightarrow {1\over 6}(1-{1\over c})^3 ={1\over 12} \Rightarrow (1-{1\over c})^3 ={1\over 2} \Rightarrow 1-{1\over c}={1\over \sqrt[3] 2} \Rightarrow {\sqrt[3]2-1\over \sqrt[3] 2} ={1\over c} \Rightarrow c=\bbox[red,2pt]{\sqrt[3] 2\over \sqrt[3]2 -1}

解答\angle POQ=90^\circ \Rightarrow {1\over \overline{OP}^2} +{1\over \overline{OQ}^2} ={1\over 3} +{1\over 4}={7\over 12}\\ 因此\cfrac{{1\over \overline{OP}^2} +{1\over \overline{OQ}^2}}{2} \ge \sqrt{{1\over \overline{OP}^2} \times {1\over \overline{OQ}^2}} \Rightarrow {7\over 24} \ge {1\over \overline{OP}\times \overline{OQ}} \Rightarrow \overline{OP}\times \overline{OQ} \ge {24\over 7} \\ \Rightarrow \triangle POQ= {1\over 2}\times \overline{OP}\times \overline{OQ} \ge {12\over 7 } \Rightarrow \triangle POQ面積的最小值=\bbox[red,2pt]{12 \over 7}
解答代公式:\cases{C_n=2^{n \choose 2}-{1\over n}\sum_{i=1}^{n-1}i{n \choose i}2^{n-i\choose 2}C_i, \text{ for }n\gt 1\\ C_1=1}\\ \Rightarrow C_2=1 \Rightarrow C_3=4 \Rightarrow C_4=38 \Rightarrow C_5=728 \Rightarrow C_6= \bbox[red,2pt]{26704}

註: 公式來源\href{https://books.google.si/books?id=yJIMx9nXB6kC&pg=PA580&lpg=PA580&dq=number%20of%20simple%20connected%20labeled%20graphs&source=bl&ots=1Reo0hpaQX&sig=0ljeS2CZl3kDDi81jML-SC7jEx4&hl=en&sa=X&ei=YoOSVPjnLIWGzAO7tYDQAg&ved=0CDcQ6AEwBw#v=onepage&q=number%20of%20simple%20connected%20labeled%20graphs&f=false}{按這裡}










2 則留言:

  1. 你好:請問第14題的第1行是為什麼呢?謝謝

    回覆刪除
    回覆
    1. 這是某個定理: 橢圓上兩點P,Q, 若OP垂直OQ則 1/(OP)^2+ 1/(OQ)^2=1/a^2 +1/b^2

      刪除