國立中興大學附屬高級中學106學年度第1次教師甄選
解答:{a=√3+√2b=√3−√2⇒{a2=5+2√6b2=5−2√6ab=1⇒{a4=49+20√6b4=49−20√6a2b2=1⇒a6+b6=(a2)3+(b2)3=(a2+b2)(a4+b4−a2b2)=10(98−1)=970由於0<b2<1⇒969<a6<970⇒⌈a6⌉=970解答:△ABC邊長分別{¯BC=a¯AC=a−k¯AB=a−2k⇒cos∠A=−12=(a−k)2+(a−2k)2−a22(a−k)(a−2k)⇒2a2−9ak+7k2=0⇒(2a−7k)(a−k)=0⇒a=72k(a=k⇒¯AC=a−k=0,不合)⇒{¯BC=7k/2¯AC=5k/2¯AB=3k/2⇒邊長比=7:5:3
解答:
曲線Γ:y=2x上的點A,其坐標可紀錄為A(x,2x);令{P(1,4)Q(2,5),則√4x−5×2x+1+x2−4x+29−√4x−2x+3+x2−2x+17=√(x−2)2+(2x−5)2−√(x−1)2+(2x−4)2=¯AQ−¯AP最大值=¯PQ=√2
解答:{a=log3√6=12(log33+log32)=12(1+log32)b=√log32<1⇒2a−1=b2⇒a=(b2+1)/2⇒√log3√6+√log32+√log3√6−√log32=√a+b−√a−b=√b2+12+b+√b2+12−b=√12(b+1)2+√12(b−1)2=1√2(b+1)+1√2(1−b)=2√2=√2
解答:

logx+y√1−x2>logx+yy⇒{1−x2>0y>0x+y>0{√1−x2>y, if x+y>1√1−x2<y, if x+y<1⇒{藍色區域:x+y>1且x2+y2<1紅色區域:0<x+y<1且x2+y2>1且x>−1⇒{藍色區域面積=π4−12紅色區域面積=12+(1−π4)÷2⇒著色面積=12+π8
解答:令{A(0,0,0)B(6,0,0)C(3,6√2,0)O(3,a,b),則{¯OA=9¯OC=6⇒{√9+a2+b2=9√(a−6√2)2+b2=6⇒{a=9/√2b=3√7/√2⇒四面積O−ABC體積=13×△ABC面積×高=13×(12×6×6√2)×3√7√2=18√7
解答:|z|=1⇒z=cosθ+isinθ⇒|z2−z+1|=|z(z−1+1z)|=|z||z−1+1z|=|z−1+1z|=|cosθ+isinθ−1+cos(−θ)+isin(−θ)|=|2cosθ−1|⇒{最大值M=3if cosθ=−1最小值m=0if cosθ=1⇒M+m=3
解答:代公式(k−1)n+(−1)n×(k−1)=(3−1)12+(−1)12(3−1)=212+2=4098
解答:圓{x2+(z−1)2=1y=0上的點P(cosθ,0,sinθ+1)至Q(0,2,2)的直線可表示成:xcosθ=y−2−2=z−2sinθ−1,則該直線與xy平面(z=0)的交集為xcosθ=y−2−2=−2sinθ−1⇒{−2x=(y−2)cosθ(y−2)(sinθ−1)=4⇒{cosθ=−2xy−2sinθ=y+2y−2⇒cos2θ+sin2θ=4x2+(y+2)2(y−2)2=1⇒x2+2y=0且z=0
解答:f(n)=n∑k=11(2k)(2k−1)=n∑k=1(12k−1−12k)=1−12+13−14+⋯+12n−1−12n=(1+13+15+⋯+12n−1)−(12+14+⋯+12n)=(1+12+13+14+15+⋯+12n−1+12n)−2(12+14+⋯+12n)=(1+12+13+14+15+⋯+12n−1+12n)−(1+12+13+⋯+1n)=1n+1+1n+2+⋯+12n=n∑k=11n+k=n∑k=11n(1+k/n)⇒limn→∞f(n)=∫1011+xdx=ln(1+x)|10=ln2
解答:A=12[cos2πn−sin2πnsin2πncos2πn]⇒Ak=12k[cos2kπn−sin2kπnsin2kπncos2kπn]⇒{Pk=Ak−1[10]=12k−1[cos2(k−1)πnsin2(k−1)πn]Pk+1=Ak[10]=12k[cos2kπnsin2kπn]⇒Sk=12‖12k−1cos2(k−1)πn12k−1sin2(k−1)πn12kcos2kπn12ksin2kπn‖=122ksin2πn⇒limn→∞(n×n∑k=1Sk)=limn→∞nsin2πn(122+124+⋯+122n)=2πlimn→∞sin2π/n2π/n×limn→∞22n−13×22n=2π×13=2π3
解答:令\cases{a=x \ge 0\\ b=2y\ge 0\\ c=3z\ge 0},則此變為:已知a+b+c=1,求a^2b +b^2c +c^2a的最大值\\ 假設a\ge b\ge c,則\cases{ac \ge bc\\ b\ge c} \Rightarrow abc+bc^2 \ge ac^2+b^2c \text{ (Rearrangement inequality) } \\ \Rightarrow a^2b +b^2c +c^2a \le a^2b+ abc+bc^2 = b(a^2+ac+c^2) \le b(a+c)^2 \le 4\left({{a+c\over 2} +{a+c\over 2} +b \over 3} \right)^3 \\=4({a+b+c \over 3})^3 ={4\over 27} \Rightarrow a^2b +b^2c +c^2a的最大值為\bbox[red,2pt]{4\over 27}
解答:\angle POQ=90^\circ \Rightarrow {1\over \overline{OP}^2} +{1\over \overline{OQ}^2} ={1\over 3} +{1\over 4}={7\over 12}\\ 因此\cfrac{{1\over \overline{OP}^2} +{1\over \overline{OQ}^2}}{2} \ge \sqrt{{1\over \overline{OP}^2} \times {1\over \overline{OQ}^2}} \Rightarrow {7\over 24} \ge {1\over \overline{OP}\times \overline{OQ}} \Rightarrow \overline{OP}\times \overline{OQ} \ge {24\over 7} \\ \Rightarrow \triangle POQ= {1\over 2}\times \overline{OP}\times \overline{OQ} \ge {12\over 7 } \Rightarrow \triangle POQ面積的最小值=\bbox[red,2pt]{12 \over 7}
解答:代公式:\cases{C_n=2^{n \choose 2}-{1\over n}\sum_{i=1}^{n-1}i{n \choose i}2^{n-i\choose 2}C_i, \text{ for }n\gt 1\\ C_1=1}\\ \Rightarrow C_2=1 \Rightarrow C_3=4 \Rightarrow C_4=38 \Rightarrow C_5=728 \Rightarrow C_6= \bbox[red,2pt]{26704}
解答:令{A(0,0,0)B(6,0,0)C(3,6√2,0)O(3,a,b),則{¯OA=9¯OC=6⇒{√9+a2+b2=9√(a−6√2)2+b2=6⇒{a=9/√2b=3√7/√2⇒四面積O−ABC體積=13×△ABC面積×高=13×(12×6×6√2)×3√7√2=18√7
解答:|z|=1⇒z=cosθ+isinθ⇒|z2−z+1|=|z(z−1+1z)|=|z||z−1+1z|=|z−1+1z|=|cosθ+isinθ−1+cos(−θ)+isin(−θ)|=|2cosθ−1|⇒{最大值M=3if cosθ=−1最小值m=0if cosθ=1⇒M+m=3
解答:代公式(k−1)n+(−1)n×(k−1)=(3−1)12+(−1)12(3−1)=212+2=4098
解答:圓{x2+(z−1)2=1y=0上的點P(cosθ,0,sinθ+1)至Q(0,2,2)的直線可表示成:xcosθ=y−2−2=z−2sinθ−1,則該直線與xy平面(z=0)的交集為xcosθ=y−2−2=−2sinθ−1⇒{−2x=(y−2)cosθ(y−2)(sinθ−1)=4⇒{cosθ=−2xy−2sinθ=y+2y−2⇒cos2θ+sin2θ=4x2+(y+2)2(y−2)2=1⇒x2+2y=0且z=0
解答:f(n)=n∑k=11(2k)(2k−1)=n∑k=1(12k−1−12k)=1−12+13−14+⋯+12n−1−12n=(1+13+15+⋯+12n−1)−(12+14+⋯+12n)=(1+12+13+14+15+⋯+12n−1+12n)−2(12+14+⋯+12n)=(1+12+13+14+15+⋯+12n−1+12n)−(1+12+13+⋯+1n)=1n+1+1n+2+⋯+12n=n∑k=11n+k=n∑k=11n(1+k/n)⇒limn→∞f(n)=∫1011+xdx=ln(1+x)|10=ln2
解答:A=12[cos2πn−sin2πnsin2πncos2πn]⇒Ak=12k[cos2kπn−sin2kπnsin2kπncos2kπn]⇒{Pk=Ak−1[10]=12k−1[cos2(k−1)πnsin2(k−1)πn]Pk+1=Ak[10]=12k[cos2kπnsin2kπn]⇒Sk=12‖12k−1cos2(k−1)πn12k−1sin2(k−1)πn12kcos2kπn12ksin2kπn‖=122ksin2πn⇒limn→∞(n×n∑k=1Sk)=limn→∞nsin2πn(122+124+⋯+122n)=2πlimn→∞sin2π/n2π/n×limn→∞22n−13×22n=2π×13=2π3
解答:令\cases{a=x \ge 0\\ b=2y\ge 0\\ c=3z\ge 0},則此變為:已知a+b+c=1,求a^2b +b^2c +c^2a的最大值\\ 假設a\ge b\ge c,則\cases{ac \ge bc\\ b\ge c} \Rightarrow abc+bc^2 \ge ac^2+b^2c \text{ (Rearrangement inequality) } \\ \Rightarrow a^2b +b^2c +c^2a \le a^2b+ abc+bc^2 = b(a^2+ac+c^2) \le b(a+c)^2 \le 4\left({{a+c\over 2} +{a+c\over 2} +b \over 3} \right)^3 \\=4({a+b+c \over 3})^3 ={4\over 27} \Rightarrow a^2b +b^2c +c^2a的最大值為\bbox[red,2pt]{4\over 27}
解答:
假設\cases{f(x)=cx(1-x)\\ g(x)=x\\ \Omega_1(綠色區域)= y=f(x)與y=g(x)所圍區域面積 };\\先求兩圖形交點,即cx(1-x)=x \Rightarrow cx^2+(1-c)x=0 \Rightarrow x(cx+1-c)=0 \Rightarrow x=0,1-{1\over c}\\ 令交點\cases{O(0,0)\\ A(1-{1\over c},1-{1\over c})} \Rightarrow \cases{\Omega_1=\int_0^{1-1/c} f(x)-g(x)\;dx ={1\over 2}(1-{1\over c})^2(c-1)-{1\over 3}c(1-{1\over c})^3\\\Omega_c= \int_{0}^1 f(x)\;dx ={1\over 6}c}\\ \Omega_1= {1\over 2}\Omega_c \Rightarrow {1\over 2}(1-{1\over c})^2(c-1)-{1\over 3}c(1-{1\over c})^3={c\over 12} \Rightarrow {1\over 2}(1-{1\over c})^3 -{1\over 3}(1-{1\over c})^3={1\over 12} \\ \Rightarrow {1\over 6}(1-{1\over c})^3 ={1\over 12} \Rightarrow (1-{1\over c})^3 ={1\over 2} \Rightarrow 1-{1\over c}={1\over \sqrt[3] 2} \Rightarrow {\sqrt[3]2-1\over \sqrt[3] 2} ={1\over c} \Rightarrow c=\bbox[red,2pt]{\sqrt[3] 2\over \sqrt[3]2 -1}
解答:\angle POQ=90^\circ \Rightarrow {1\over \overline{OP}^2} +{1\over \overline{OQ}^2} ={1\over 3} +{1\over 4}={7\over 12}\\ 因此\cfrac{{1\over \overline{OP}^2} +{1\over \overline{OQ}^2}}{2} \ge \sqrt{{1\over \overline{OP}^2} \times {1\over \overline{OQ}^2}} \Rightarrow {7\over 24} \ge {1\over \overline{OP}\times \overline{OQ}} \Rightarrow \overline{OP}\times \overline{OQ} \ge {24\over 7} \\ \Rightarrow \triangle POQ= {1\over 2}\times \overline{OP}\times \overline{OQ} \ge {12\over 7 } \Rightarrow \triangle POQ面積的最小值=\bbox[red,2pt]{12 \over 7}
解答:代公式:\cases{C_n=2^{n \choose 2}-{1\over n}\sum_{i=1}^{n-1}i{n \choose i}2^{n-i\choose 2}C_i, \text{ for }n\gt 1\\ C_1=1}\\ \Rightarrow C_2=1 \Rightarrow C_3=4 \Rightarrow C_4=38 \Rightarrow C_5=728 \Rightarrow C_6= \bbox[red,2pt]{26704}
註: 公式來源\href{https://books.google.si/books?id=yJIMx9nXB6kC&pg=PA580&lpg=PA580&dq=number%20of%20simple%20connected%20labeled%20graphs&source=bl&ots=1Reo0hpaQX&sig=0ljeS2CZl3kDDi81jML-SC7jEx4&hl=en&sa=X&ei=YoOSVPjnLIWGzAO7tYDQAg&ved=0CDcQ6AEwBw#v=onepage&q=number%20of%20simple%20connected%20labeled%20graphs&f=false}{按這裡}
你好:請問第14題的第1行是為什麼呢?謝謝
回覆刪除這是某個定理: 橢圓上兩點P,Q, 若OP垂直OQ則 1/(OP)^2+ 1/(OQ)^2=1/a^2 +1/b^2
刪除