Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

2021年6月25日 星期五

104年全國教甄聯招-數學詳解

教育部受託辦理104學年度公立高級中等學校教師甄選

一、單選題

解答an=1×2+2×3++n(n+1)=nk=1k(k+1)nk=1k2<an<nk=1(k+1)21+2++n<an<2+3++(n+1)n(n+1)2<an<n(n+3)2limnn(n+1)2n2<limnann2<limnn(n+3)2n212<limnann2<12limnann2=12(B)
解答888888=13×6837620155mod62015813=581388888=6837×13+7(B)
解答
¯ADA¯AB¯AC=64=¯BD¯DC{¯BD=67/5¯CD=47/5¯AH=a¯BH=6a¯CH2=42a2=(27)2(6a)2a=2{¯AH=2¯BH=62=4¯CH=4222=23;¯DE¯CH=¯BD¯BC=¯BE¯BH{¯DE=653¯BE=12/5¯EH=8/5{A(0,0)B(6,0)C(2,23)H(2,0){AD:y=13xCH:x=2P(2,23){BP=(4,23)BA=(6,0)BC=(4,23)BP=αBA+βBC(4,23)=(6α4β,23β){α=4/9β=1/3α+β=4+39=79(A)
解答f(x)=0α,β,γf(x)=x33x2+bx+c=(xα)(xβ)(xγ)α+β+γ=3f(1)=1=(1α)(1β)(1γ)(1+α)(1+β)(1+γ)=1|1+α1111+β1111+γ|=(1+α)(1+β)(1+γ)+2(1+α)(1+β)(1+γ)=1+23(α+β+γ)=23=5(B)
解答an=n{a1=3a2=3×2=6an=2an1an=32n1a6=325=96:2,21696=9096=0.9375(C)
解答an+1=13an+2an=13an1+2=13(13an2+2)+2=(13)2an2+2(1+13)=(13)3an3+2(1+13+132)==(13)n1a1+2(1+13+132++13n2)=(13)n1+2(1+13+132++13n2)limnan=0+232=3(D)
解答

S13S2:S1S2S2S2:11212=14S1S2S3S2:11323=29S1S2S1S2:1161=1614+29+16=2336(C)
解答
{¯AB=a¯AD=b¯AC=c{asinC=2R3=3k(1)bsinB=2R1=k(2)bsinC=2R2=2k(3)csinB=2R1=3k(4){{(1)(3){a=3ksinCb=2ksinCa:b=3:2{(2)(4){b=ksinBc=3ksinBb:c=1:3a:b:c=3:2:6(D)

二、複選題

解答(A)×:{Γ1=2a=Γ2Γ1=2b=Γ2Γ1Γ2(B):Γ290Γ1(C):(0,±c)(D)×:{Γ2:y=±abxΓ3:y=±bax(BC)
解答

AA(1,1,1)E:x2y+z=3L:AAEn=(1,2,1)L:x11=y12=z11A(t+1,2t+1,t+1)¯AAA

解答(A)\bigcirc: \sigma_X的計算與順序無關,因此\sigma_X不變 \\(B)\times:有兩個(x_i,y_i)改變,因此相關係數隨之變動\\(C)\bigcirc: r={Cov(x,y)\over \sigma_X\sigma_Y} \Rightarrow X,Y互換,r值不變\\(D)\bigcirc: cov(x,y)=cov(x+5,y)且\sigma(X)=\sigma(X+5),因此斜率不變\\故選\bbox[red,2pt]{(ACD)}
解答(A)\bigcirc: (a,b,c)=(1,2,3-6),(1,3,4-6),(1,4,5-6),(1,5,6);(2,3,4-6),(2,4,5-6),(2,5,6);\\\qquad (3,4,5-6),(3,5,6);(4,5,6);共有(4+3+2+1) +(3+2+1)+(2+1)+1=20種\\ \qquad \Rightarrow 機率為20/6^3=5/54\\(B)\bigcirc: 算法同(A),共有\sum_{n=1}^6 \sum_{k=1}^n k=21+15+10+6+3+1=56種,機率為56/216=7/27\\ (C)\bigcirc: (a,b,c)=(6,4,1),(6,3,2),(5,5,1),(5,4,2),(5,3,3),(4,4,3)及其排列,\\\qquad 共有6+6+3+6+3+3=27種,機率為27/216=1/8\\ (D)\bigcirc: (a,b,c)=(a,a,c),(a,c,c),共有36+36=72種,再扣除重複的(a,a,a)有6種,共66種\\\qquad 機率為66/216=11/36\\ 故選\bbox[red,2pt]{(ABCD)}

第二部分:綜合題

一、填充題

解答a+\log_2 3,a+\log_4 3,a+\log_8 3成等比\Rightarrow (a+\log_4 3)^2 = (a+\log_2 3)(a+\log_8 3)\\ \Rightarrow (a+{1\over 2}\log_2 3)^2 = (a+\log_2 3)(a+{1\over 3}\log_2 3) \\\Rightarrow a^2+a\log_2 3+{1\over 4}(\log_2 3)^2=a^2+ {4\over 3}a\log_2 3 +{1\over 3}(\log_2 3)^2\\ \Rightarrow {1\over 12}(\log_2 3)^2+ {1\over 3}a\log_2 3=0 \Rightarrow {1\over 12}\log_2 3(\log_2 3+4a)=0  \Rightarrow a=-{1\over 4}\log_2 3 \\ \Rightarrow 公比={a+\log_4 3 \over a+\log_2 3} = {-{1\over 4}\log_2 3+{1\over 2}\log_2 3 \over -{1\over 4}\log_2 3+\log_2 3} ={{1\over 4}\log_2 3\over {3\over 4}\log_2 3} = \bbox[red, 2pt]{1\over 3}
解答\lim_{n\to \infty}{1\over n^2}\sum_{k=1}^n \sqrt{n^2-k^2} =\lim_{n\to \infty}{1\over n}\sum_{k=1}^n \sqrt{1-({k\over n})^2} = \int_0^1\sqrt{1-x^2}\;dx\\ =\int_0^{\pi/2} \sqrt{1-\sin^2\theta} \cos\theta \;d\theta =\int_0^{\pi/2} \cos^2\theta \;d\theta ={1\over 2}\int_0^{\pi/2} \cos 2\theta+1\;d\theta ={1\over 2}\left.\left[ {1\over 2}\sin 2\theta+\theta \right]\right|_0^{\pi/2} \\ ={1\over 2}\cdot {\pi\over 2} =\bbox[red,2pt]{\pi \over 4}
解答第1種填法:a[x][y]=x+(y-1)\times 29,1\le x\le 29,1\le y\le 17\\第2種填法:b[x][y]=y+(x-1)\times 17,1\le x\le 29,1\le y\le 17\\a[x][y]=b[x][y] \Rightarrow x+29(y-1)=y+17(x-1) \Rightarrow 28y=16x+12 \Rightarrow 14y=8x+6\\ \Rightarrow (x,y)=(1,1), (8,5),(15,9),(22 ,13),(29,17)\\ \Rightarrow a[1][1]+a[8][5]+a[15][9]+a[22][13]+a[29][17]=1+124 +247 +370+ 493= \bbox[red,2pt]{1235}註:題目倒數第二行的\color{blue}{38}應該是\color{blue}{34}
解答\cases{A(0,0,0)\\ B(a,a,0)\\ C(a,0,a)\\ D(0,a,a)} \Rightarrow \cases{\triangle ABC 重心M(2a/3,a/3,a/3)\\ \triangle ACD重心N(a/3,a/3, 2a/3)} \\\Rightarrow \overline{MN} =\sqrt{{a^2\over 9} +0+{a^2\over 9}} ={\sqrt 2\over 3}a=2  \Rightarrow a=3 \sqrt 2 \\ 又\cases{ABCD 重心G(2a/4,2a/4,2a/4)=({3\sqrt 2\over 2}, {3\sqrt 2\over 2}, {3\sqrt 2\over 2})\\ E:平面BCD:x+y+z=2a=6\sqrt 2} \\\Rightarrow 球半徑r=d(G,E)= \left|{9\sqrt 2/2-6\sqrt 2\over \sqrt 3}\right|={\sqrt 6\over 2} \\ \Rightarrow 球體積={4\over 3}\pi r^3= {4\over 3}\pi\cdot {6\sqrt 6\over 8} =\bbox[red,2pt]{\sqrt 6\pi}
解答\overrightarrow{OP}=(3\cos \alpha+\sin \beta,2\cos \alpha+4\sin \beta)= \cos\alpha(3,2)+\sin \beta(1,4) =\cos\alpha\cdot  \vec u+\sin \beta \cdot\vec v\\ 由\vec u及\vec v所展開的平行四邊形面積=\begin{Vmatrix} 3& 2\\ 1& 4\end{Vmatrix} =10,其中\cases{\vec u=(3,2)\\ \vec v=(1,4)},而\cases{0\le \cos\alpha \le \sqrt 3/2\\ 0\le \sin \beta \le \sqrt 3/2} \\ 因此P點所形成的面積=10\cdot {\sqrt 3\over 2}\cdot {\sqrt 3\over 2} = \bbox[red,2pt]{15\over 2}


解答任抽二球=(x,y),可得獎金如下表:\\ \begin{array}{cc|r}x & y & 獎金\\\hline 1 & 6 & 7\\ 6 & 2& 8\\ 5 & 9 & 14\\ 9 & 7 & 16\\ 4 & 8 &12 \\ 8 & 3 & 11 \\\hdashline 1 & 5 & 6  \\ 5 & 4 & 9\\ 6 & 9 & 15 \\ 9 & 8 & 17 \\2 & 7 & 9 \\ 7 & 3& 10\\\hline \end{array}\\ \Rightarrow 總獎金=7+8+\cdots +10=134 \Rightarrow 期望值=134\times {1\over C^9_2}=\bbox[red,2pt]{67\over 18} 

解答令\cases{a=x_1-1\\ b=x_2-x_1\\ c=x_3-x_2 \\d=20-x_3} \Rightarrow \cases{0\le a\\ 4\le b \\ 5\le c \\ 0\le d\\a+b+c+d =19},再令\cases{e=b-4\\ f=c-5}\\,則本題相當於求a+e+f+d=19-4-5=10的非負整數解,共有H^4_{10}\\ \Rightarrow 機率為{H^4_{10}\over C^{20}_3} ={C^{13}_{10}\over C^{20}_3} ={286\over 1140}= \bbox[red,2pt]{143\over 570}
解答
\cos \angle A= {(\sqrt 3)^2 +(3\sqrt 3)^2-(\sqrt{21})^2 \over 2\times \sqrt 3\times 3\sqrt 3} ={9\over 18}={1\over 2} \Rightarrow \angle A=60^\circ\\ \cases{正\triangle ACD:\cases{\overline{AC}=3\sqrt 3 \Rightarrow \overline{AG_3}=3\\\angle G_3AC=60^\circ \div 2=30^\circ} \\ 正\triangle ABE:\cases{\overline{AB}=\sqrt 3  \Rightarrow \overline{AG_1}=1\\ \angle G_1AB =60^\circ \div 2=30^\circ}} \Rightarrow \cos \angle G_1AG_3={\overline{AG_1}^2+ \overline{AG_3}^2-\overline{G_1G_3}^2 \over 2\times \overline{AG_1} \times \overline{AG_3}} \\ \Rightarrow \cos (30^\circ+60^\circ +30^\circ)=\cos 120^\circ =-{1\over 2}={10-\overline{G_1G_3}^2\over 6} \Rightarrow \overline{G_1G_3}= \sqrt{13} \\\Rightarrow 正\triangle G_1G_2G_3面積= \bbox[red,2pt]{{13\over 4}\sqrt 3}
解答

\sqrt{x^4-3x^2-6x+13} -\sqrt{x^4-x^2 +1} =\sqrt{(x^2-2)^2+ (x-3)^2}- \sqrt{(x^2-1)^2+x^2} \\ =\overline{PA}-\overline{PB},其中\cases{P(x^2,x) \in \Gamma:x=y^2\\ A(2,3)\\ B(1,0)}\\ 要使此距離差最大,可取L:\overleftrightarrow{AB}與\Gamma 的交點,且距B較近,如上圖;\\此時,\overline{PA}-\overline{PB}=\overline{AB} = \sqrt{1+9}=\bbox[red,2pt]{\sqrt{10}}

二、計算證明題

解答

(1)(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))\\= (a^3+ab^2+ac^2-(a^2b+abc+ca^2)) \\\qquad +a^2b+b^3+bc^2-(ab^2+b^2c+abc)\\\qquad +(a^2c+ b^2c+c^3-(abc+bc^2+c^2a))\\= a^3+b^3+c^3-3abc\\ \Rightarrow a^3+b^3+c^3-3abc = \bbox[red,2pt]{(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))}(2)a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-(ab+bc+ca)) \\={1\over 2}(a+b+c)((a-b)^2+(b-c)^2 +(c-a)^2) \ge 0 \Rightarrow a^3+b^3+c^3-3abc \ge 0\\ 令\cases{A=a^2\\ B=b^3\\ C=c^3} \Rightarrow A+B+C-3\cdot \sqrt[3]A \cdot \sqrt[3]B \cdot \sqrt[3]C \ge 0\Rightarrow {A+B+C\over 3} \ge \sqrt[3]{ABC},\bbox[red,2pt]{故得證}(3){(a+1)+(b+2)+(c+3)\over 3} ={18+6\over 3}=8\ge \sqrt[3]{(a+1)(b+2)(c+3)} \\ \Rightarrow 8^3=512 \ge (a+1)(b+2)(c+3) \Rightarrow (a+1)(b+2)(c+3) \bbox[red,2pt]{最大值為512}\\,此時a+1=b+2=c+3 \Rightarrow \cases{a=c+2\\ b=c+1} 代入a+b+c=18 \Rightarrow \bbox[red,2pt]{\cases{a=7\\ b=6\\c=5}}註:第(3)題應該是求\color{blue}{最大值},而不是最小值。

解答

\overline{BC}^2-\overline{AB}^2 =\overline{AC} \times \overline{AB} \Rightarrow \overline{BC}^2 = \overline{AB}(\overline{AB} +\overline{AC}) \Rightarrow {\overline{BC}\over \overline{AB}}={\overline{AB}+\overline{AC} \over \overline{BC}}\\ 因此在\overleftrightarrow{BA}上找一點D,使得\overline{AD}=\overline{AC}(見上圖),則\triangle ABC \sim \triangle CBD \Rightarrow \angle C=\angle D = \alpha\\ 又\overline{AD}=\overline{AC} \Rightarrow \angle ACD=\angle D=\alpha \Rightarrow \angle D+\angle B+\angle BCD =54+3\alpha=180\\ \Rightarrow \alpha= \angle C=\bbox[red,2pt]{ 42^\circ}
 解答\cases{x+{1\over y}=4\\ y+{1\over z}=1\\ z+{1\over x}={7\over 3}} \Rightarrow (x+{1\over y})(  y+{1\over z})( z+{1\over x})=4\cdot 1\cdot {7\over 3}={28\over 3} \\\Rightarrow xyz+(x+{1\over y})+(y+{1\over z})+(z+{1\over x}) +{1\over xyz}={28\over 3} \Rightarrow xyz+4+ 1+ {7\over 3}+{1\over xyz}={28\over 3} \\\Rightarrow xyz+{1\over xyz}=2 \Rightarrow (xyz)^2-2(xyz)+1=0 \Rightarrow xyz=\bbox[red,2pt]{1}

============================== END =============================
註:學校未公告計算證明題答案,解題僅供參考;其他教甄試題及詳解

1 則留言:

  1. 您好:請問第4題的第2行(a+1)(b+1)(c+1)是不是應該為1?謝謝

    回覆刪除