Processing math: 78%

2021年6月22日 星期二

105年鳳山高中教甄-數學詳解

 國立鳳山高級中學105學年度第1次專任教師甄選

一、填充題

解答{A(0,0)B(b,11)C(c,37){C=B60C=B60{[1/23/23/21/2][b11]=[c37][1/23/23/21/2][b11]=[c37]{{b113=2c3b+11=74{b=213c=53{b+113=2c3b+11=74{b=213c=53bc=105×3=315
解答
¯AB{¯BC=8222=215¯AD=8272=15{tanθ1=tanABC=2/215=1/15tan(θ1+θ2)=tanABD=15/7tan(θ1+θ2)=tanθ1+tanθ21tanθ1tanθ2157=115+tanθ21115tanθ2tanθ2=115cosθ2=154=(215)2+72¯CD22815¯CD=2
解答{Pn=(xn,yn),1n179P0=A=(1,0)P180=B=(1,0)Pn+1OPn=1,0n179xn=cosn179n=1x2n=179n=1cos2ncos21+cos22++cos290=cos21+cos22++cos288+cos289+0=cos21+cos22++cos2(902)+cos2(901)=cos21+cos22++sin22+sin21=(cos21+sin21)+(cos22+sin22)++(cos244+sin244)+cos245=1+1++1+12=44+12cos291+cos292++cos2179=44+12179n=1x2n=2(44+12)=89

解答

xπ63236x2dx=π[36x13x3]|632=π(144902)=23π63=144π=144π(144902)π=902π
解答limn(12n)p+(22n)p++(2n2n)p(12+12n)p+(12+22n)p++(12+n2n)p=limn1n((12n)p+(22n)p++(2n2n)p)1n((12+12n)p+(12+22n)p++(12+n2n)p)=limn1n((12n)p+(22n)p++(2n2n)p)limn1n((12+12n)p+(12+22n)p++(12+n2n)p)=limn1n2nk=1(k2n)plimn1nnk=1(12+k2n)p=20(x2)pdx10(12+x2)pdx=2p+1/2p(p+1)(2p+11)/(p+1)2p=2p+12p+11
解答2a+b+2a+18ab=a2+a2+a2+a2+b3+b3+b3+2a+6ab+6ab+6ab1111a424b3332a63a3b3=11
解答M=[01/31/31/31/301/31/31/31/301/31/31/31/30]M=PAP1=[1111110010101001][100001/300001/300001/3][1/41/41/41/41/43/41/41/41/41/43/41/41/41/41/43/4]M60=PA60P1=P[100001/36000001/36000001/360]P1=[11/3601/3601/36011/36000101/36001001/360][1/41/41/41/41/43/41/41/41/41/43/41/41/41/41/43/4]=[14+141359]APA60P1[1000]14+141359
解答a,b,c{a=3b=4c=5C=90{tanC2=tan45=1tanA=34=2tan(A/2)1tan2(A/2)tanA2=13tanA2tanC2=131=13
解答{L1:x+3y=4L2:5x+3y=16A(4,0)B(4,12){L1L2P(5,3)¯ABQ(4,6){PQ:x+y=2¯PQC(12,32)ΓPQΓ45ΓΓx(x,y)45(x,y){x=xyy=x+y{A(4,0)A(4,4)B(4,12)B(16,8)C(1/2,3/2)C(1,2)Γ:x=ay2+by+cA,B,CΓ{16a+4b+c=464a8b+c=164a2b+c=1{a=1/4b=c=0x=14y2(xy)=14(x+y)2Γ:x2+2xy+y24x+4y=0

解答α,βx2+(k2+ak)x+k2+ak+127=0{α+β=k2akαβ=k2+ak+127αβ+α+β=127(α+1)(β+1)=128=32×4{α=31β=3{312+31(k2+ak)+k2+ak+127=032+3(k2+ak)+k2+ak+127=0k2+ak+34=00a2=4×34a=234(234a)
解答f(x)+f(11x)=x+1+1x1f(x)+f(x1x)=x+xx1(1)x=x1x(1)f(x1x)+f(x1x1x1x)=x1x+x1xx1x1f(x1x)+f(11x)=x1x+1x(2)x=x1x(2)f(x1x1x1x)+f(11x1x)=x1x1x1x+1x1xf(11x)+f(x)=11x+1x(3)(1)+(2)+(3)2(f(x)+f(x1x)+f(11x))=3f(x)+f(x1x)+f(11x)=32(4)(4)(2)f(x)=12x1x+x=x+1x12
解答:x3+y3+z33xyz=(x+y+z)(x2+y2+z2(xy+yz+zx))=12(x+y+z)((xy)2+(yz)2+(zx)2)x3+(y)3+(z)33x(y)(z)=12(xyz)((x+y)2+(y+z)2+(x+z)2=0xyz=0x=y+z(1)(1)x2=2(y+z)(y+z)2=2(y+z)(y+z)(y+z2)=0y+z=2(1)x=2a+b+c=x+y+z=2+2=4
解答

z=a+biz2z+2=a2+bia+2+bi=(a2+bi)(a+2bi)(a+2+bi)(a+2bi)=(a2+b24)+4bi(a+2)2+b2{a2+b2=4b0zC1:x2+y2=4()ω=z+iC2:x2+(y1)2=4(1)M=|ω+1|2+|ω1|2=¯RP2+¯RQ2{P(1,0)Q(1,0)RC2R(0,3)ω=3iM|ω|=3
解答

{x=m+2cosθy=3sinθ(xm2)2+(y3)2=1(xm)24+y23=1{a=2b=3{P(ma,0)=(m2,0)Q(m+a,0)=(m+2,0){x=t2+32y=6tx=(y6)2+32=y26+32y2=6x9=6(x32)R(32,0)xR¯PQ{P=Rm2=3/2m=7/2Q=Rm+2=3/2m=1/212m72a+b=12+72=3
解答log2x4log22x+12log23x++n(2)n1log2nx=log2x2log2x+4log2x++(2)n1log2x=log2(xx2x4x(2)n1)=(12+42n1)log2x=1(2)n3log2x:1(2)n3log2x>1(2)n3log2(x22)x<x22(1(2)n<0)x2x2>0(x2)(x+1)>0x>2(xx1)

解答

將圓台展開後如上圖AA'B'B,其中\cases{\overset{\Large\frown}{AA'} =上底面圓周長=2\pi \\\overset{\Large\frown}{BB'} =下底面圓周長=10\pi} \qquad,則\overline{QR}即為所求;\\ 令\angle AOA'=\theta \Rightarrow 2\pi = r\theta = 3\theta \Rightarrow \theta ={2\over 3}\pi \Rightarrow \cos \theta ={\overline{OP}^2 +\overline{OB'}^2- \overline{PB'}^2 \over 2\times \overline{OP}\times \overline{OB'}} \\ \Rightarrow -{1\over 2}={81+225-\overline{PB'}^2 \over 270} \Rightarrow \overline{PB'}=21\\ \triangle OPB'面積={1\over 2}\cdot \overline{OQ}\cdot \overline{PB'} ={1\over 2}\cdot \overline{OP}\cdot \overline{OB'}\sin \angle POB' \Rightarrow 21 \cdot \overline{OQ} =135\cdot {\sqrt 3\over 2}\\ \Rightarrow \overline{OQ}={45\over 14}\sqrt 3 \Rightarrow \overline{QR}= \overline{OQ}-3 ={45\over 14}\sqrt 3-3 ={45\sqrt 3-42\over 14} ={a\sqrt 3+b\over 14} \Rightarrow \cases{a=45\\ b=-42}\\ \Rightarrow a+b= \bbox[red,2pt]{3}\\註:題目的{a\sqrt 3+b\over \color{blue}{12}},分母的12應該是14

二、計算題

解答
(1)f(x)=x^6+x^4+x^2+1=(x-\alpha_1)(x-\alpha_2)\cdots(x-\alpha_6)\\ \Rightarrow f(-2i)=-64+16-4+1=(-2i-\alpha_1)(-2i-\alpha_2) \cdots (-2i-\alpha_6)\\ \Rightarrow (2i+\alpha_1)(2i+\alpha_2)\cdots (2i+\alpha_6) =\bbox[red,2pt]{-51}(2)
x^6+x^4+x^2+1=0 \Rightarrow (x^2-1)(x^6+x^4+x^2+1) =0  \Rightarrow x^8=1\\ \Rightarrow P_1,P_2,\dots,P_6為單位圓上的正八邊形的八個頂點扣除(1,0),(-1,0)所剩的六個頂點,見上圖;\\六邊形面積=正方形P_1P_3P_4P_6+ \triangle P_1P_2P_3 + \triangle P_4P_5P_6 = (\sqrt 2)^2 + \sqrt 2\times (1-{\sqrt 2\over 2})\\ =2+\sqrt 2-1 =\bbox[red,2pt]{\sqrt 2+1}

解答f(x)=\int_0^x(x-t)\cos^3t\;dt = \left. \left[ {1\over 36}(3(x-t)(9\sin t+\sin(3t))-27\cos t-\cos(3t))\right] \right|_0^x\\ ={1\over 36}(-27\cos x-\cos(3x))-{1\over 36}(-27-1) ={1\over 36}(28-27\cos x-\cos(3x)) \\f'(x)=0 \Rightarrow {1\over 36}(27\sin x+3\sin(3x))=0 \Rightarrow 9\sin x+\sin (3x)=0 \\ \Rightarrow 9\sin x+3\sin x-3\sin^2x -\sin^3 x=0 \Rightarrow \sin^3x-3\sin^2x+12\sin x=0\\ \Rightarrow \sin x(\sin^2x-3\sin x+12)=0 \Rightarrow \sin x=0 \Rightarrow x=0,\pi \Rightarrow \bbox[red,2pt]{\cases{f(0)=0為極小值\\ f(\pi) =14/9為極大值\quad}}
 

============================ END ==================================

5 則留言:

  1. 您好:請問第6題可以拆成a+a+b+2/a+18/ab嗎?這樣值比較小,謝謝

    回覆刪除
    回覆
    1. 不行, 因為等號成立的條件a=a=b=2/a=18/ab (你的方法) 無法求得相對應的a與b;

      刪除
  2. 另外,第7題的第二行PAP*-1是怎麼來的呢?謝謝

    回覆刪除
  3. 然後計算題第2題解答的第一行積分就看不懂了,有用什麼公式或是變數變換嗎?謝謝

    回覆刪除