Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2021年6月7日 星期一

105年竹北高中教甄-數學詳解

 國立竹北高中105學年度第1學期第1次教師甄選

壹: 填充題

解答

{z1=az2=aiz3=az4=ai,aRz2z1z3z1=aia2a=12+12i
解答1p+13q=123p+1q=361p+1p+1p+1q441p3q36441p3q941p3q3log1/3p+log1/3q=3log3plog3q=log3(p3q)=log31p3qlog394=83log1/3p+log1/3q8
解答
(x1)2+(2x4)2+(x1)2+2x=¯PA+¯PB{A(1,4)B(1,0)Py=2xABy=2x¯PA+¯PB=¯AB=4
解答
¯PQ=3{P¯BCQ¯OAABC¯OA=¯OB=¯OCP¯BCPQB:¯BQ=22+3=7{BQA:¯QA=427=3BQO:¯QO=a27¯OA=a=¯QA+¯QO=3+a27(a3)2=a276a=16a=83
解答f(x)=(x1)20=(x2+1)Q(x)+px+rf(i)=(i1)20=pi+r{r=f(i)p=f(i)f(i)=((i1)2)10=(2i)10=(2)10i10=1024(1)=1024(p,r)=(0,1024)
解答
¯AH¯BCAHBC=0(12AB+32AC)(AB+AC)=012|AB|22ABAC+32|AC|2=02522ABAC+272=0ABAC=13ABAC=|AB||AC|cosAcosA=1353=1315sinA=21415:cosA=¯AB2+¯AC2¯BC22ׯABׯAC1315=25+9¯BC230¯BC=22:¯BCsinA=2RR=22214/1512=1527=R2π=22528π
解答α+β+γ=πα2+β2+γ2=π2cotα2=cot(π2β2γ2)=tan(β2+γ2)=tan(β/2)+tan(γ/2)1tan(β/2)tan(γ/2)=1/cot(β/2)+1/cot(γ/2)11/(cot(β/2)cot(γ/2))=cotβ2+cotγ2cotβ2cotγ21cotα2cotβ2cotγ2cotα2=cotβ2+cotγ2cotα2cotβ2cotγ2=cotα2+cotβ2+cotγ2=3cotβ2(cotα2+cotγ2=2cotβ2)cotα2cotγ2=3
解答

F1(5,0)LF1(5,55)¯F2F1LP¯F2F1=¯PF2+¯PF1=2a(5+5)2+(55)2=215a=15b2=a2c2=155=10:x215+y210=1
解答a=log2x1log2x=a2+1log1/2x3=log2x3=3log2x=3(a2+1):a+12(3a23)+2>03a22a1<0(3a+1)(a1)<013<a<10log2x1<10log2x1<11log2x<22x<4
解答

{C:y2=axL:py=xA(ap2,ap)()x=πap20(ax1p2x2)dx=π[12ax213p2x3]|ap20=(12a3p413a3p4)π=a3p4π6
解答


x2+y24x7y+10=0(x2)2+(y72)2=254{C(2,72)r=52y{P(0,5)Q(0,2)L:y=m(x3)A(3,0)LAPBP{AP:y=53x+5BP:y=23x+253<m<23
解答
:(x5)2+(y12)2=202{x{P(21,0)Q(11,0)y{R(0,12+515)S(0,12515){Ax¯OQ=¯APCy¯OS=¯CROABC24×10=240

貳: 非選擇題

解答zz=3P(3X3)=99.7%e3%30.5(10.5)n0.030.5n0.0150nn=2500P(|X|z)=99.7%z=2.967n2445.3n=2446
解答x51=0(x1)(1+x+x2+x3+x4)=0ω,ω2,ω3,ω41+x+x2+x3+x4=0ω=ei2π/5f(x)=1+x+x2+x3+x4=(xω)(xω2)(xω3)(xω4)f(1)=1+1+1+1+1=(1ω)(1ω2)(1ω3)(1ω4)(1ω)(1ω2)(1ω3)(1ω4)=5{A(1)B(ω)C(ω2)D(ω3)E(ω4),where ωk=ei2kπ/5¯ABׯACׯADׯAE=|ω1||ω21||ω31||ω41|=|(1ω)(1ω2)(1ω3)(1ω4)|=5
解答f(x)=x44p3x+12f(x)=4x34p3=0x=pf(x)>0f(p)>0p44p4+12>03p4<12p4<4p2<22<p<2解答
(1)a2na2n1=(15)2na2n1a2n2=(15)2n1(13)2n1a2n2a2n3=(15)2n2a2n3a2n4=(15)2n3(13)2n3a2a1=(15)2a1a0=1513a2na0=(15+152+152n)(13+133++132n1)lim(2)\begin{array}{} a_{2n+2}-a_{2n+1} & = & ({1\over 5})^{2n+2}\\a_{2n+1}-a_{2n} & = & ({1\over 5})^{2n+1}-({1\over 3})^{2n+1}   \\\hline a_{2n+2}-a_{2n} & = & {6\over 5}({1\over 5})^{2n+1}-({1\over 3})^{2n+1}   \end{array}\\ \Rightarrow  a_{2n+2}-a_{2n}={{6\over 5}\cdot 3^{2n+1}-5^{2n+1}\over 15^{2n+1}}\\ 當n=0時,a_2-a_0=({18\over 5}-5)/15 \lt 0,成立;\\假設n=k時亦成立,即a_{2k+2}-a_{2k}\lt 0 \Rightarrow {{6\over 5}\cdot 3^{2k+1}-5^{2k+1}\over 15^{2k+1}} \lt 0 \Rightarrow {6\over 5}\cdot 3^{2k+1}\lt 5^{2k+1}\\當n=k+1時,a_{2k+4}-a_{2k+2}= {{6\over 5}\cdot 3^{2k+3}-5^{2k+3}\over 15^{2k+3}}\\ 由於{6\over 5}\cdot 3^{2k+1}\lt 5^{2k+1} \Rightarrow  {6\over 5}\cdot 3^{2k+3}\lt 3^2\cdot 5^{2k+1}\lt 5^2\cdot 5^{2k+1}=5^{2k+3}\\ \Rightarrow {6\over 5}\cdot 3^{2k+3}-5^{2k+3}\lt 0 \Rightarrow a_{2k+4}-a_{2k+2}\lt 0,即n=k+1時亦成立\\由歸納法知:a_{2n+2}-a_{2n} \lt 0,\bbox[red, 2pt]{故得證}\\因此a_{2n} \lt a_{2n-2} \lt \cdots \lt a_2 \lt a_0=0 \Rightarrow a_{2n}\lt 0;\\ 再由\lim_{n\to \infty}a_{2n}=-{1\over 8},可得-{1\over 8}\le a_n \lt 0,n\in \mathbb{N}
解答
(1)C^n_k = C^{n-1}_k + C^{n-1}_{k-1} = \left( C^{n-2}_k +C^{n-2}_{k-1}\right) +\left(C^{n-2}_{k-1} +C^{n-2}_{k-2} \right) = C^{n-2}_{k} + 2C^{n-2}_{k-1} +C^{n-2}_{k-2},\bbox[red, 2pt]{故得證}(2)從n個人中挑出k個的方法可區分成三種情況:\\ 甲乙都沒被選中:C^{n-2}_{k}\\ 甲乙其中一人被選中:C^2_1C^{n-2}_{k-1}=2C^{n-2}_{k-1}\\ 甲乙都被選中:C^{n-2}_{k-2}\\ 因此n個人選k個的方法數C^n_k =C^{n-2}_{k} + 2C^{n-2}_{k-1} +C^{n-2}_{k-2}
======================== END=============
解題僅供參考,其他教甄試題及詳解

2 則留言:

  1. 您好:請問非選第1題:有手機的學生比例為什麼是0.5呢?謝謝

    回覆刪除
    回覆
    1. 當p=0.5時, p(1-p)最大,求「至少」所以取p=0.5

      刪除